1 Section 1.3

Exercise 1 (# 4). Exhibit a bijection between \mathbb{N} and odd integers greater than 13.

The bijection is $f(n) = 2n + 13$. It is injective, for if $f(k_1) = f(k_2)$, then $2k_1 + 13 = 2k_2 + 13$, thus $k_1 = k_2$. It is surjective, for if k is an odd integer greater than 13, then $k-12$ is an odd integer greater than 1, thus $k-12 = 2n+1$. But then $k = 2n + 1 + 12 = 2n + 13$ as desired.

Exercise 2 (# 11). If $|S| = n$ then $\mathcal{P}(S)$ has 2^n elements.

Base case ($n = 1$): Suppose $S = \{a\}$. Then $\mathcal{P}(S) = \{\emptyset, \{a\}\}$

Induction Step: Suppose $|S| = n \Rightarrow |\mathcal{P}(s)| = 2^n$, and suppose that $|J| = n + 1$. Let $a \in J$ be arbitrary. Then $\mathcal{P}(J)$ is the collection of subsets of J which contain a and the subsets of J that don’t. By the induction hypothesis, there are precisely 2^n subsets of J which contain a. Since the sets that don’t contain a are precisely the complements of the ones that do, there are 2^n of those as well. Thus $|\mathcal{P}(s)| = 2^n + 2^n = 2^{n+1}$.

2 Section 2.1

Exercise 3 (# 3). Solve $2x + 5 = 8$ by using the field axioms of \mathbb{R}.

For the sake of brevity, we just do (a). The other equations are solved in a
similar manner.

\[8 = 2x + 5 \quad (1) \]
\[8 - 5 = 2x + 5 - 5 \text{ (see definition of subtraction) } \quad (2) \]
\[3 = 2x + (5 - 5) \text{ (associativity) } \quad (3) \]
\[3 = 2x + 0 \text{ (existence of negatives) } \quad (4) \]
\[3 = 2x \text{ (additive identity) } \quad (5) \]
\[\frac{1}{2}3 = \frac{1}{2}2x \quad (6) \]
\[\frac{3}{2} = (\frac{1}{2}2)x \text{ (associativity) } \quad (7) \]
\[\frac{3}{2} = 1x \text{ (multiplicative inverse) } \quad (8) \]
\[\frac{3}{2} = x \text{ (multiplicative identity) } \quad (9) \]

Exercise 4 (**# 4**). If \(a \in \mathbb{R} \) satisfies \(a \cdot a = 0 \) then \(a = 0 \) or \(a = 1 \).

First notice that \(a = 0 \) is a solution to the equation (see the axiom on existence of a 0 element). To find other solutions, suppose \(a \neq 0 \). Then \(\frac{1}{a} \) exists, and so \(\frac{1}{a} \cdot a = \frac{1}{a}a \). Using the field axioms it is easy to show that this implies that \(a = 1 \).

Exercise 5 (**#8**).

(a). If \(x, y \in \mathbb{Q} \) then \(x + y, xy \in \mathbb{Q} \).

Write \(x = a/b \) and \(y = c/d \). Then \(x + y = a/b + c/d = (ad + cb)/bd \in \mathbb{Q} \). Then \(xy = a/b \cdot c/d = ac/bd \in \mathbb{Q} \).

(b). If \(x \in \mathbb{Q} \) and \(y \notin \mathbb{Q} \), then \(x + y \notin \mathbb{Q} \). If \(x \neq 0 \) then \(xy \notin \mathbb{Q} \).

Write \(x = a/b \). For contrapositive, suppose \(x + y \in \mathbb{Q} \). Then write \(x + y = c/d \). But then \(y = c/d - a/b \in \mathbb{Q} \). If \(x \neq 0 \), then if \(xy \in \mathbb{Q} \), we have \((a/b) \cdot y \in \mathbb{Q} \). Since \(a \neq 0 \), then (by part (a)) \(b/a \cdot (a/b)y \in \mathbb{Q} \). Thus \(y \in \mathbb{Q} \).

Exercise 6 (**#9**).

(a).

Write \(x_1 = s_1 + t_1 \sqrt{2} \) and \(x_2 = s_2 + t_2 \sqrt{2} \). Then \(x_1 + x_2 = (s_1 + s_2) + (t_1 + t_2) \sqrt{2} \in K \). Then \(x_1x_2 = (s_1s_2 + 2t_1t_2) + (2s_1t_1) \sqrt{2} \in K \).

(b).

If \(x \neq 0 \), write \(x = s + t\sqrt{2} \), where either \(s \neq 0 \) or \(t \neq 0 \). Then \(\frac{1}{s + t\sqrt{2}} = \frac{s - t\sqrt{2}}{s^2 - 2t^2} = \frac{s}{s^2 - 2t^2} + \frac{-t}{s^2 - 2t^2} \sqrt{2} \in K \).

Exercise 7 (**#18**). If \(a \leq b + \epsilon \) for all \(\epsilon > 0 \), then \(a \leq b \).
Suppose to the contrary that \(a > b \). Then choose \(\epsilon = \frac{a-b}{2} \). Then \(a \leq b + \epsilon = b + \frac{a-b}{2} \Rightarrow a - b \leq \frac{a-b}{2} \). This is a contradiction since \(a - b \geq 0 \) by hypothesis.

Exercise 8 (#23). If \(a > 0 \), \(b > 0 \), then \(a < b \iff a^n < b^n \).

We proceed by induction. The base case is obvious. For the induction step, suppose that \(a < b \iff a^k < b^k \). We wish to prove that \(a < b \iff a^{k+1} < b^{k+1} \).

\[
\Rightarrow \quad \text{If } a < b, \text{ then by the induction hypothesis, } a^k < b^k. \text{ Then, since } a > 0, \text{ we have } a^{k+1} < ab^k. \text{ Then, by Thm 2.1.7c, since } a < b, \text{ we have } ab^k < b^{k+1}, \text{ establishing the result.}
\]

\[
\Leftarrow \quad \text{Now suppose } a^{k+1} < b^{k+1}, \text{ which is to say that } b^{k+1} - a^{k+1} > 0. \text{ Using the axioms of the real numbers one can show that } b^{k+1} - a^{k+1} = (b-a)(b^k + a^k). \text{ Since } b^{k+1} - a^{k+1} > 0 \text{ and since } b^k + a^k > 0 \text{ it follows from the order axioms that } b - a > 0, \text{ which is the desired result.}
\]

3 Section 2.2

Exercise 9 (#2). \(|a+b| < |a| + |b| \iff ab > 0 \)

First notice that from the order axioms we can show that \(ab > 0 \iff a > 0 \text{ and } b > 0 \text{ or } a < 0 \text{ and } b < 0. \)

\[
\Leftarrow \quad \text{There are two cases: Either } a > 0, b > 0, \text{ or } a < 0, b < 0. \text{ In the first case we have } |a+b| = a + b = |a| + |b| \text{ as desired. In the second case } -|a+b| = a + b = -|a| - |b|, \text{ so multiplying both sides by } -1 \text{ gives the result.}
\]

\[
\Rightarrow \quad \text{We prove the contrapositive, which is an equivalent statement: If } a > 0, b < 0, \text{ then } |a+b| \neq |a| + |b|. \text{ By definition, either } |a+b| = a + b \text{ or } |a+b| = -(a+b). \text{ In the first case, the result follows as soon as we show that } a + b \neq |a| + |b| = a - b, \text{ which is equivalent to showing that } b \neq -b, \text{ which follows immediately since } b \neq 0. \text{ In the second case, we wish to show that } -(a + b) \neq |a| + |b| = a - b, \text{ which is equivalent to showing that } a \neq -a, \text{ which again follows since } a \neq 0.
\]

Exercise 10 (#5). If \(a < x < b \text{ and } a < y < b \text{ then } |x - y| < b - a. \)

Geometrically, this just says that the distance from \(y \) to \(x \) is less than the distance from \(b \) to \(a \). Without loss of generality, let us assume that \(x < y \) (if this is not so, then we can just switch the letters \(x \) and \(y \)). Then we wish to show that \(y - x < b - a \). Since \(y < b \) and \(a < x \) it follows that \(y - x < b - a. \)

Exercise 11 (#14). If \(\epsilon > 0 \text{ and } \delta > 0, \text{ then } \text{ (1) } V_\epsilon(a) \cap V_\delta(a) = V_{\min\{\epsilon, \delta\}}(a) \text{ and (2) } V_\epsilon(a) \cup V_\delta(a) = V_{\max\{\epsilon, \delta\}}(a) \text{ for appropriate choices of } \gamma.

Proof. For (1), \(\gamma = \min\{\epsilon, \delta\} \), for then it is clear that \(|x-a| < \gamma \iff |x-a| < \delta \text{ and } |x-a| < \epsilon. \) For (2), \(\gamma = \max\{\epsilon, \delta\} \), for then it is clear that \(|x-a| < \gamma \iff |x-a| < \delta \text{ or } |x-a| < \epsilon. \)