
Solutions to Homework 2- MAT319/320

September 28, 2008

1 Section 1.3

Exercise 1 (# 4). Exhibit a bijection between N and odd integers greater than
13.

The bijection is f(n) = 2n + 13. It is injective, for if f(k1) = f(k2), then
2k1 + 13 = 2k2 + 13, thus k1 = k2. It is surjective, for if k is an odd integer
greater than 13, then k−12 is an odd integer greater than 1, thus k−12 = 2n+1.
but then k = 2n+ 1 + 12 = 2n+ 13 as desired.

Exercise 2 (# 11). If |S| = n then P(S) has 2n elements.

Base case (n = 1): Suppose S = {a}. Then P(S) = {∅, {a}}

Induction Step:
Suppose |S| = n ⇒ |P(s)| = 2n, and suppose that |J | = n + 1. Let a ∈ J
be arbitrary. Then P(J) is the collection of subsets of J which contain a and
the subsets of J that don’t. By the induction hypothesis, there are precisely 2n

subsets of J which contain a. Since the sets that don’t contain a are precisely
the complements of the ones that do, there are 2n of those as well. Thus
|P(s)| = 2n + 2n = 2n+1.

2 Section 2.1

Exercise 3 (# 3). Solve 2x+ 5 = 8 by using the field axioms of R.

For the sake of brevity, we just do (a). The other equations are solved in a
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similar manner.

8 = 2x+ 5 (1)
8− 5 = 2x+ 5− 5 (see definition of subtraction ) (2)

3 = 2x+ (5− 5) (associativity) (3)
3 = 2x+ 0 (existence of negatives) (4)

3 = 2x (additive identity) (5)
1
2

3 =
1
2

2x (6)

3
2

= (
1
2

2)x (associativity) (7)

3
2

= 1x (multiplicative inverse) (8)

3
2

= x (multiplicative identity) (9)

Exercise 4 (# 4). If a ∈ R satisfies a · a = 0 then a = 0 or a = 1.

First notice that a = 0 is a solution to the equation ( see the axiom on
existence of a 0 element). To find other solutions, suppose a 6= 0. Then 1

a
exists, and so 1

aa · a = 1
aa. Using the field axioms it is easy to show that this

implies that a = 1.

Exercise 5 (#8).

(a). If x, y ∈ Q then x+ y, xy ∈ Q.

Write x = a/b and y = c/d. Then x + y = a/b + c/d = (ad + cb)/bd ∈ Q.
Then xy = a/b · c/d = ac/bd ∈ Q.

(b). If x ∈ Q and y 6∈ Q, then x+ y 6∈ Q. If x 6= 0 then xy 6∈ Q.

Write x = a/b. For contrapositive, suppose x+ y ∈ Q. Then write x+ y =
c/d. But then y = c/d−a/b ∈ Q. If x 6= 0, then if xy ∈ Q, we have (a/b) ·y ∈ Q.
Since a 6= 0, then (by part (a)) b/a · (a/b)y ∈ Q. Thus y ∈ Q.

Exercise 6 (# 9).

(a).

Write x1 = s1 + t1
√

2 and x2 = s2 + t2
√

2. Then x1 + x2 = (s1 + s2) + (t1 +
t2)
√

2 ∈ K. Then x1x2 = (s1s2 + 2t1t2) + (2s1t1)
√

2 ∈ K.

(b).

If x 6= 0, write x = s + t
√

2, where either s 6= 0 or t 6= 0. Then 1
s+t
√

2
=

1
s+t
√

2
s−t
√

2
s−t
√

2
= s−t

√
2

s2−2t2 = s
s2−2t2 + −t

s2−2t2

√
2 ∈ K.

Exercise 7 (# 18). If a ≤ b+ ε for all ε > 0, then a ≤ b.
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Suppose to the contrary that a > b. Then choose ε = a−b
2 . Then a ≤ b+ ε =

b+ a−b
2 ⇒ a− b ≤ a−b

2 . This is a contradiction since a− b ≥ 0 by hypothesis.

Exercise 8 (#23). If a > 0, b > 0, then a < b ⇐⇒ an < bn.

We proceed by induction. The base case is obvious. For the induction step,
suppose that a < b ⇐⇒ ak < bk. We wish to prove that a < b ⇐⇒ ak+1 <
bk+1.
⇒
If a < b, then by the induction hypothesis, ak < bk. Then, since a > 0,we have
ak+1 < abk. Then, by Thm 2.1.7c, since a < b, we have abk < bk+1, establishing
the result.
⇐
Now suppose ak+1 < bk+1, which is to say that bk+1 − ak+1 > 0. Using the
axioms of the real numbers one can show that bk+1 − ak+1 = (b − a)(bk + ak).
Since bk+1 − ak+1 > 0 and since bk + ak > 0 It follows from the order axioms
that b− a > 0, which is the desired result.

3 Section 2.2

Exercise 9 (# 2). |a+ b| < |a|+ |b| ⇐⇒ ab > 0

First notice that from the order axioms we can show that ab > 0 ⇐⇒ a >
0 and b > 0 or a < 0 and b < 0.
⇐
There are two cases: Either a > 0, b > 0, or a < 0, b < 0. In the first case we
have |a+ b| = a+ b = |a|+ |b| as desired. In the second case −|a+ b| = a+ b =
−|a| − |b|, so multiplying both sides by −1 gives the result.
⇒
We prove the contrapositive, which is an equivalent statement: If a > 0, b < 0,
then |a+b| 6= |a|+|b|. By definition, either |a+b| = a+b or |a+b| = −(a+b). In
the first case, the result follows as soon as we show that a+ b 6= |a|+ |b| = a− b,
which is equivalent to showing that b 6= −b, which follows immediately since
b 6= 0. In the second case, we wish to show that −(a + b) 6= |a| + |b| = a − b,
which is equivalent to showing that a 6= −a, which again follows since a 6= 0.

Exercise 10 (# 5). If a < x < b and a < y < b then |x− y| < b− a.

Geometrically, this just says that the distance from y to x is less than the
distance from b to a. Without loss of generality, let us assume that x < y (if
this is not so, then we can just switch the letters x and y). Then we wish to
show that y − x < b− a. Since y < b and a < x it follows that y − x < b− a.

Exercise 11 (#14). If ε > 0 and δ > 0, then (1) Vε(a) ∩ Vδ(a) = Vγ(a) and
(2) Vε(a) ∪ Vδ(a) = Vγ(a) for appropriate choices of γ.

Proof. For (1), γ = min{ε, δ}, for then it is clear that |x−a| < γ ⇐⇒ |x−a| < δ
and |x−a| < ε. For (2), γ = max{ε, δ}, for then it is clear that |x−a| < γ ⇐⇒
|x− a| < δ or |x− a| < ε.
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