Solutions to Homework 2- MAT319/320

September 28, 2008

1 Section 1.3

Exercise 1 (# 4). Exhibit a bijection between N and odd integers greater than
13.

The bijection is f(n) = 2n 4+ 13. It is injective, for if f(k1) = f(k2), then
2ky 4+ 13 = 2ko + 13, thus k1 = ko. It is surjective, for if k is an odd integer
greater than 13, then k—12 is an odd integer greater than 1, thus k—12 = 2n+1.
but then k£ = 2n+ 14 12 = 2n 4 13 as desired.

Exercise 2 (# 11). If |S| = n then P(S) has 2™ elements.
Base case (n = 1): Suppose S = {a}. Then P(S) = {0, {a}}

Induction Step:
Suppose |S| = n = |P(s)] = 2", and suppose that |J| = n+ 1. Let a € J
be arbitrary. Then P(J) is the collection of subsets of J which contain a and
the subsets of J that don’t. By the induction hypothesis, there are precisely 2"
subsets of J which contain a. Since the sets that don’t contain a are precisely
the complements of the ones that do, there are 2" of those as well. Thus
|P(s)| = 2™ + 2" = 27+t

2 Section 2.1

Exercise 3 (# 3). Solve 2¢: 4+ 5 = 8 by using the field azioms of R.

For the sake of brevity, we just do (a). The other equations are solved in a



similar manner.

8§8=2z+5 (1)
8 — 5 =2z 45— 5 (see definition of subtraction ) (2)
3 =2z + (5 —5) (associativity) (3)
3 = 2z + 0 (existence of negatives) (4)
3 = 2z (additive identity) (5)
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2329

23 522 (6)

3 1 e
5= (52):1: (associativity) (7)
g = lz (multiplicative inverse) (8)
% = z (multiplicative identity) 9)

Exercise 4 (# 4). If a € R satisfiesa-a =0 thena=0 ora=1.

First notice that @ = 0 is a solution to the equation ( see the axiom on
existence of a 0 element). To find other solutions, suppose a # 0. Then %
exists, and so %a ca = %a. Using the field axioms it is easy to show that this
implies that a = 1.

Exercise 5 (#8).
(a). If z,y € Q then x +y,xy € Q.
Write © = a/b and y = ¢/d. Then x +y = a/b+ ¢/d = (ad + ¢b)/bd € Q.
Then zy = a/b-¢/d = ac/bd € Q.
D). fzeQandy ¢ Q, thenz+y & Q. If x #0 then zy € Q.

Write © = a/b. For contrapositive, suppose « + y € Q. Then write x + y =
¢/d. But then y = ¢/d—a/b € Q. If x # 0, then if zy € Q, we have (a/b)-y € Q.
Since a # 0, then (by part (a)) b/a - (a/b)y € Q. Thus y € Q.

Exercise 6 (# 9).
(a).
Write Tr1 = 81 +t1\@ and To = S92 +t2ﬁ Then xr1+ a9 = (81 + 52) + (tl +
tg)\/ﬁ € K. Then z129 = (8182 + 2t1t2) + (281t1)\/§ e K.
(b).
If © # 0, write = s + tv/2, where either s # 0 or t # 0. Then ——~ =

s+tv2
1 s—tv/2 _ s—tV2 _ s —t
s+tv2 s—tv/2 T s2—2t2 T s2-2t2 + 52 —2t2 \/5 €K.

Exercise 7 (# 18). Ifa < b+ ¢ for all e > 0, then a <b.




Suppose to the contrary that a > b. Then choose € = “T_b. Thena <b+e=
b+ “gb =a—-b< agb. This is a contradiction since a — b > 0 by hypothesis.

Exercise 8 (#23). Ifa>0,b>0, thena <b < a™ <b".

We proceed by induction. The base case is obvious. For the induction step,
suppose that a < b <= a* < b*. We wish to prove that a < b += da**! <
bk-ﬁ-l.
=
If a < b, then by the induction hypothesis, a* < b¥. Then, since a > 0,we have
akt1 < ab®. Then, by Thm 2.1.7¢, since a < b, we have ab® < b**!, establishing
the result.
=
Now suppose a*t! < b¥+1 which is to say that b*t!1 — a**1 > 0. Using the
axioms of the real numbers one can show that b**1 — ak¥+1 = (b — a)(b* + a*).
Since b¥+1 — ¢**1 > 0 and since b* 4 a* > 0 It follows from the order axioms
that b —a > 0, which is the desired result.

3 Section 2.2

Exercise 9 (# 2). |a+b| <|a| +]b| < ab>0

First notice that from the order axioms we can show that ab >0 <= a >
Oand b>0ora<0andb<0.
P
There are two cases: Either a > 0, b > 0, or a < 0,b < 0. In the first case we
have |a +b| = a+b = |a| + |b| as desired. In the second case —|a+b| =a+b =
—|a| — |b], so multiplying both sides by —1 gives the result.
=
We prove the contrapositive, which is an equivalent statement: If a > 0,b < 0,
then |a+b| # |a|+|b|. By definition, either |a+b| = a+b or |a+b| = —(a+Db). In
the first case, the result follows as soon as we show that a+b # |a|+|b| = a — b,
which is equivalent to showing that b # —b, which follows immediately since
b # 0. In the second case, we wish to show that —(a 4+ b) # |a| + |b| = a — b,
which is equivalent to showing that a # —a, which again follows since a # 0.

Exercise 10 (# 5). Ifa<z <banda <y <b then |z —y| <b—a.

Geometrically, this just says that the distance from y to z is less than the
distance from b to a. Without loss of generality, let us assume that z < y (if
this is not so, then we can just switch the letters z and y). Then we wish to
show that y —x < b — a. Since y < b and a < z it follows that y —x < b — a.

Exercise 11 (#14). Ife > 0 and 6 > 0, then (1) Vc(a) N Vs(a) = V,(a) and
(2) Ve(a) U Vs(a) = V4 (a) for appropriate choices of ~.

Proof. For (1), v = min{e, §}, for then it is clear that |[z—a| < v < |z—a| <o
and |z —al| < e. For (2), v = max{e, ¢}, for then it is clear that |z —a| < v <—
|t —al <dor|r—al <e. O



