Solutions to Homework 2- MAT319/320

September 28, 2008

1 Section 1.3

Exercise 1 (# 4). Exhibit a bijection between \mathbb{N} and odd integers greater than 13.

The bijection is f(n) = 2n + 13. It is injective, for if $f(k_1) = f(k_2)$, then $2k_1 + 13 = 2k_2 + 13$, thus $k_1 = k_2$. It is surjective, for if k is an odd integer greater than 13, then k-12 is an odd integer greater than 1, thus k-12 = 2n+1. but then k = 2n + 1 + 12 = 2n + 13 as desired.

Exercise 2 (# 11). If |S| = n then $\mathcal{P}(S)$ has 2^n elements.

Base case (n = 1): Suppose $S = \{a\}$. Then $\mathcal{P}(S) = \{\emptyset, \{a\}\}$

Induction Step:

Suppose $|S| = n \Rightarrow |\mathcal{P}(s)| = 2^n$, and suppose that |J| = n + 1. Let $a \in J$ be arbitrary. Then $\mathcal{P}(J)$ is the collection of subsets of J which contain a and the subsets of J that don't. By the induction hypothesis, there are precisely 2^n subsets of J which contain a. Since the sets that don't contain a are precisely the complements of the ones that do, there are 2^n of those as well. Thus $|\mathcal{P}(s)| = 2^n + 2^n = 2^{n+1}$.

2 Section 2.1

Exercise 3 (# 3). Solve 2x + 5 = 8 by using the field axioms of \mathbb{R} .

For the sake of brevity, we just do (a). The other equations are solved in a

similar manner.

$$8 = 2x + 5 \tag{1}$$

$$8-5 = 2x+5-5$$
 (see definition of subtraction) (2)

$$3 = 2x + (5 - 5)$$
(associativity) (3)

$$3 = 2x + 0$$
(existence of negatives) (4)

$$3 = 2x \text{ (additive identity)} \tag{5}$$

$$\frac{1}{2}3 = \frac{1}{2}2x$$
 (6)

$$\frac{3}{2} = (\frac{1}{2}2)x \text{ (associativity)} \tag{7}$$

$$\frac{3}{2} = 1x \text{ (multiplicative inverse)} \tag{8}$$

$$\frac{3}{2} = x$$
 (multiplicative identity) (9)

Exercise 4 (# 4). If $a \in \mathbb{R}$ satisfies $a \cdot a = 0$ then a = 0 or a = 1.

First notice that a = 0 is a solution to the equation (see the axiom on existence of a 0 element). To find other solutions, suppose $a \neq 0$. Then $\frac{1}{a}$ exists, and so $\frac{1}{a}a \cdot a = \frac{1}{a}a$. Using the field axioms it is easy to show that this implies that a = 1.

Exercise 5 (#8).

(a). If $x, y \in \mathbb{Q}$ then $x + y, xy \in Q$.

Write x = a/b and y = c/d. Then $x + y = a/b + c/d = (ad + cb)/bd \in \mathbb{Q}$. Then $xy = a/b \cdot c/d = ac/bd \in \mathbb{Q}$.

(b). If $x \in \mathbb{Q}$ and $y \notin \mathbb{Q}$, then $x + y \notin \mathbb{Q}$. If $x \neq 0$ then $xy \notin \mathbb{Q}$.

Write x = a/b. For contrapositive, suppose $x + y \in \mathbb{Q}$. Then write x + y = c/d. But then $y = c/d - a/b \in \mathbb{Q}$. If $x \neq 0$, then if $xy \in \mathbb{Q}$, we have $(a/b) \cdot y \in \mathbb{Q}$. Since $a \neq 0$, then (by part (a)) $b/a \cdot (a/b)y \in \mathbb{Q}$. Thus $y \in \mathbb{Q}$.

Exercise 6 (# 9).

(a)**.**

Write $x_1 = s_1 + t_1\sqrt{2}$ and $x_2 = s_2 + t_2\sqrt{2}$. Then $x_1 + x_2 = (s_1 + s_2) + (t_1 + t_2)\sqrt{2} \in K$. Then $x_1x_2 = (s_1s_2 + 2t_1t_2) + (2s_1t_1)\sqrt{2} \in K$.

(b)**.**

If $x \neq 0$, write $x = s + t\sqrt{2}$, where either $s \neq 0$ or $t \neq 0$. Then $\frac{1}{s+t\sqrt{2}} = \frac{1}{s+t\sqrt{2}} \frac{s-t\sqrt{2}}{s-t\sqrt{2}} = \frac{s-t\sqrt{2}}{s^2-2t^2} = \frac{s}{s^2-2t^2} + \frac{-t}{s^2-2t^2}\sqrt{2} \in K.$

Exercise 7 (# 18). If $a \le b + \epsilon$ for all $\epsilon > 0$, then $a \le b$.

Suppose to the contrary that a > b. Then choose $\epsilon = \frac{a-b}{2}$. Then $a \le b + \epsilon = b + \frac{a-b}{2} \Rightarrow a - b \le \frac{a-b}{2}$. This is a contradiction since $a - b \ge 0$ by hypothesis. **Exercise 8** (#23). If a > 0, b > 0, then $a < b \iff a^n < b^n$.

We proceed by induction. The base case is obvious. For the induction step, suppose that $a < b \iff a^k < b^k$. We wish to prove that $a < b \iff a^{k+1} < b^{k+1}$.

 \Rightarrow

 \Leftarrow

If a < b, then by the induction hypothesis, $a^k < b^k$. Then, since a > 0, we have $a^{k+1} < ab^k$. Then, by Thm 2.1.7*c*, since a < b, we have $ab^k < b^{k+1}$, establishing the result.

Now suppose $a^{k+1} < b^{k+1}$, which is to say that $b^{k+1} - a^{k+1} > 0$. Using the axioms of the real numbers one can show that $b^{k+1} - a^{k+1} = (b-a)(b^k + a^k)$. Since $b^{k+1} - a^{k+1} > 0$ and since $b^k + a^k > 0$ It follows from the order axioms that b - a > 0, which is the desired result.

3 Section 2.2

Exercise 9 (# 2). $|a+b| < |a| + |b| \iff ab > 0$

First notice that from the order axioms we can show that $ab > 0 \iff a > 0$ and b > 0 or a < 0 and b < 0.

 \Leftarrow

There are two cases: Either a > 0, b > 0, or a < 0, b < 0. In the first case we have |a + b| = a + b = |a| + |b| as desired. In the second case -|a + b| = a + b = -|a| - |b|, so multiplying both sides by -1 gives the result.

We prove the contrapositive, which is an equivalent statement: If a > 0, b < 0, then $|a+b| \neq |a|+|b|$. By definition, either |a+b| = a+b or |a+b| = -(a+b). In the first case, the result follows as soon as we show that $a+b \neq |a|+|b| = a-b$, which is equivalent to showing that $b \neq -b$, which follows immediately since $b \neq 0$. In the second case, we wish to show that $-(a+b) \neq |a|+|b| = a-b$, which is equivalent to showing that $a \neq -a$, which again follows since $a \neq 0$.

Exercise 10 (# 5). If a < x < b and a < y < b then |x - y| < b - a.

Geometrically, this just says that the distance from y to x is less than the distance from b to a. Without loss of generality, let us assume that x < y (if this is not so, then we can just switch the letters x and y). Then we wish to show that y - x < b - a. Since y < b and a < x it follows that y - x < b - a.

Exercise 11 (#14). If $\epsilon > 0$ and $\delta > 0$, then (1) $V_{\epsilon}(a) \cap V_{\delta}(a) = V_{\gamma}(a)$ and (2) $V_{\epsilon}(a) \cup V_{\delta}(a) = V_{\gamma}(a)$ for appropriate choices of γ .

Proof. For (1), $\gamma = \min\{\epsilon, \delta\}$, for then it is clear that $|x-a| < \gamma \iff |x-a| < \delta$ and $|x-a| < \epsilon$. For (2), $\gamma = \max\{\epsilon, \delta\}$, for then it is clear that $|x-a| < \gamma \iff |x-a| < \delta$ or $|x-a| < \epsilon$.