
Solutions to Homework 1- MAT319/320

September 14, 2008

Even though I haven’t graded every problem of your homework, please read
each solution carefully and then go back to each of your homework problems
and compare your solutions to mine, correcting any problems that come up.
Also, please take the time to make sure that you really understand the solutions
to these problems, don’t just skim over them. It may take some time, but it will
help to ensure that your homework grades will steadily improve (it will improve
your test grades as well). Please email me (knoxk@math.sunysb.edu) or drop
by during office hours if you have any questions about these solutions. I am
more than happy to discuss them with you.

1 Section 1.1

Exercise 1 (#4).

(a). Show that D = (A \B)∪ (B \A) (Hence the name symmetric difference)

First we show that D ⊂ (A\B)∪(B \A). If x ∈ D, then there are two cases:
either x ∈ A and x 6∈ A∩B, or x ∈ B and x 6∈ A∩B. We can rewrite this (why?)
as: either x ∈ A and x 6∈ B or x ∈ B and x 6∈ A. Thus x ∈ (A \B) ∪ (B \A).
Next we show (A \ B) ∪ (B \ A) ⊂ D. If x ∈ (A \ B) ∪ (B \ A), then either
x ∈ (A \ B) or x ∈ (B \ A). We can rewrite this (why?) as x ∈ (A \ A ∩ B) or
x ∈ (B \A ∩B). Thus x ∈ D.

(b). Show that D = (A ∪B) \ (A ∩B).

This follows immediately from the definition given in the statement of the
problem.

Exercise 2 (#5).

(a). What is A1 ∩A2?

A1 ∩ A2 = {n : n = 2k} ∩ {n : n = 3k} (where k ∈ N, of course). But this
means that 2 and 3 must be divisors of n, so we get A1∩A2 = {6k : k ∈ N} = A5.

(b). Determine the sets
⋃
{An : n ∈ N} and

⋂
{An : n ∈ N}.
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Put A :=
⋃
{An : n ∈ N} and B :=

⋂
{An : n ∈ N}. We claim that

A = N \ {1} and B = ∅. If k ∈ N, k 6= 1, then k ∈ Ak−1 ⊂ A, thus N \ {1} ⊂ A.
It is clear that A ⊂ N \ {1}. So A = N \ {1}. To show that B = ∅, we will show
that if k ∈ N, then k 6∈ B. Notice that k + 1 is the smallest element of Ak, and
since k < k + 1 it follows that k 6∈ Ak, for all k ∈ N. Thus k 6∈ B.

Exercise 3 (# 8).

(a). Determine f(E).

Recall from calculus that f(x) is a decreasing function. So the smallest
element of f(E) is f(2) = 1/4 and the largest element is f(1) = 1. Thus
f(E) = [1/4, 1]. (Note: What we have really shown is that f(E) ⊂ [1/4, 1].
The other inclusion follows from the Intermediate Value Theorem (which you
may have learned in Calculus), but it is usually common to ignore this fact in
“simple” problems like this.)

(b). Determine f−1(G).

The inverse image is A = [−1,−1/2]∪[1/2, 1]. It is easy to see that f(A) = G,
thus A ⊂ f−1(G). On the other hand, if x ∈ f−1(G), then we have 1

x2 ∈ [1, 4],
so 1 ≤ 1

x2 ≤ 4, so 1/4 ≤ x2 ≤ 1 , so 1/2 ≤ |x| ≤ 1, so x ∈ A as desired. (Note:
It really is necessary to check both inclusions, otherwise you might make the
mistake of thinking that f−1(G) = [1/2, 1]).

Exercise 4 (#18).

Notice that we only need to consider f as a function f : D(f) → R(f), so
f is automatically a surjection. Since it is assumed that f is an injection, it
makes sense to talk about the inverse function f−1.

(a).

By definition, f−1 = {(f(x), x) : x ∈ D(f)}. Thus f−1 ◦ f(x) = x. If y ∈
R(f), then y = f(x0) for some x0 ∈ D(f). Then f ◦ f−1(y) = f(f−1(f(x0))) =
f(x0) = y as desired.

(b). If f : A→ B is a bijection, then f−1 : B → A is a bijection.

Injection:
If y1 6= y2 we want to show that f−1(y1) 6= f−1(y2). Since f is surjective, write
y1 = f(x1), y2 = f(x2). Since f is a well-defined function and since y1 6= y2, it
follows that x1 6= x2. Using part a, we have f−1(y1) = x1 6= x2 = f−1(y2).
Surjection:
If x ∈ A we want to find y ∈ B so that f−1(y) = x. Put y = f(x). Then, by
part a, f−1(y) = f−1 ◦ f(x) = x.

Exercise 5 (#19).
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Notice that g ◦ f is a function from A to C.
Injective:
Suppose x1 6= x2. Since f is injective, f(x1) 6= f(x2). Since g is injective,
g ◦ f(x1) 6= g ◦ f(x2).
Surjective:
Suppose z ∈ C. Since g is surjective, there exists y ∈ B so that g(y) = z. Since
f is surjective, there exists x ∈ A so that f(x) = g(y). Then g ◦ f(x) = z.

Exercise 6 (#22).

Suppose f : A → B. First we have to show that f is bijective, to even be
able to talk about an inverse function.
Injective:
Suppose x1 6= x2. Then g◦f(x1) = x1 6= x2 = g◦f(x2). Since g is a well-defined
function, f(x1) 6= f(x2).
Surjective:
Suppose y ∈ B. Put x = g(y). By hypothesis, f(x) = f ◦ g(y) = y.
Now we want to show that

g = {(f(x), x) : x ∈ A}

Here we are using the definition of inverse function given on page 8 of Bartle
and Sherbert (your textbook). Since g ◦f(x) = x it follows that {(f(x), x) : x ∈
A} ⊂ g. To show that {(f(x), x) : x ∈ A} ⊂ g, first notice that the argument
given in the first part of this proof can also be used to prove that g is a bijection.
So if (y, x) ∈ g, since g is surjective we can write (y, x) = (f(x0), x)). Since g is
injective we see that x = x0. Thus (y, x) = (f(x), x). Thus (y, x) ∈ {(f(x), x) :
x ∈ A}. (Note: It really is necessary to prove both inclusions. It is not good
enough to just say: “g is the inverse function since g ◦ f(x) = x.”)
Remark: This problem, together with problem 18, allows us to make a new
definition of inverse function that is equivalent to the one given in your book.
If f : A → B is bijective, then f−1 is the unique function determined by the
rule f ◦ f−1(y) = y and f−1 ◦ f(x) = x. This definition is usually easier to work
with.

2 Section 1.2

Exercise 7 (#2).

Proof by induction:
Base case (n = 1): 13 = [ 12 (1)(1 + 1)]2.
Induction step:
Suppose 13 + 23 + . . . + k3 = [ 12k(k + 1)]2. We want to show that

13 + 23 + . . . + k3 + (k + 1)3 = [
1
2

(k + 1)(k + 2)]2.
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From the induction hypothesis the Left Hand Side (LHS) is

LHS = [
1
2
k(k + 1)]2 + (k + 1)3 = (k + 1)2[

1
4
k2 + k + 1] = (k + 1)2[

1
4

(k + 2)2]

which is clearly equal to the RHS (Right Hand Side).

Exercise 8 (#16).

The answer is n = 1 and n ≥ 5. It is easy to verify the first 4 cases. We use
induction to prove the result for n ≥ 5.
Base case (n = 5) : 52 = 25 < 32 = 25.
Induction step:
Suppose k2 < 2k. We want to show that (k + 1)2 < 2k+1. Since k2 < 2k we see
that k2 + 1 ≤ 2k, so it is enough to prove that 2k < 2k if k ≥ 5. We can rewrite
this as k < 2k−1. We will prove this by induction. The base case is n = 5. In
this case we have 5 < 24 = 16. For the induction step, if j < 2j−1, we wish to
show that j + 1 < 2j . Since j < 2j−1 and 1 < 2j−1 (here j ≥ 5) it follows that
j + 1 < 2j−1 + 2j−1 = 2j . Thus 2k < 2k. Thus (from the original induction
hypothesis) k2 + 2k + 1 < 2k+1. This is the desired result.

Exercise 9 (#20).

For the base case we need to know that 1 ≤ x1 ≤ 2 and 1 ≤ x2 ≤ 2. (Why
isn’t it enough to just know it for x1 ?) This is certainly true since x1 = 1 and
x2 = 2. For the induction step, assume that xk and xk−1 are both in the interval
[1, 2]. Then it follows that 2 ≤ xk−1 + xk ≤ 4. But then 1 ≤ 1

2 (xk + xk−1) ≤ 2,
as desired.
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