
MAT 319/320 Real Analysis

Correction of Midterm I

Problem 1. (25 points) Let C > 0 be a real number. Show that for any natural number n≥ 1,
one has (1+ C)n ≥ 1+ n C.

Proof. Proof by induction:
Let’s call P(n) the following proposition: (1+ C)n ≥ 1 + n C.

1. P(1) is true because 1 + C > 1+ C;

2. Assume that P(n) is true:
thus we assume that (1+ C)n ≥ 1+ n C. Now one has

(1+ C)n+1 = (1 + C).(1 +C)n

> (1 + C).(1 +nC)(becauseP(n) is true)

= 1 +nC +C +nC2

> 1 + (n +1)C

Therefore P(n + 1) is true.
Conclusion: we proved by induction that the result is true for any integer n> 1.

�

Problem 2. (25 points) First version:
Find lim (xn), where xn =

1

n + 1
(1+ 2n)(n+ 3)

√

.
Second version:
Find lim (xn), where xn =

1

n + 1
(n +2)(3n+ 1)

√

.

Proof.

a) First version:(detailed solution)
For any n > 1, let’s factor by the dominant terms under the square root:

xn =
1

n + 1
(1 + 2n)(n + 3)

√
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√
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(
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√
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(
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At this point we recall that the archimedean property implies that the sequence (1/n)
converges to zero. By the Sum rule, the sequence (1+ 1/n) converges to 1, the sequence

(2 + 1/n) converges to 2, and the sequence (1 + 3/n) converges to 1. By the product
rule, the sequence (2 + 1/n)(1 + 3/n) converges to 2. Since this last sequence is made of
nonnegative terms we can apply the Square root rule and conclude that

(

2 +
1

n

)(

1+
3

n

)

√

converges to 2
√

. Finally the Quotient rule implies that
1

1+ 1/n

con-

verges to 1, and a final application of the product rule implies that (xn) converges to 2
√

.
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b) Second version:
Similarly,

xn =
1

n + 1
(n+ 2)(3n + 1)

√

=
n

n + 1
(1+ 2/n)(3+ 1/n)

√

=
1

1 +1/n
(1+ 2/n)(3 + 1/n)

√

From this we deduce that (xn) converges to 3
√

.

�

Problem 3. (25 points) Working from the definition of the limit of a sequence, write a careful
proof of the following statement: If (xn) has a limit, then that limit is unique.

Proof. See the textbook, theorem 3.1.4 Uniqueness of limits.
�

Problem 4. (25 points) First version:

Let Jn = [1− 1

n
2
, n + 1]. Determine

⋂

n=1
∞

Jn.

Second version:
Let Jn = [1−n, 1+

1

n
2
]. Determine

⋂

n=1
∞

Jn.

Proof. 1. First version:let’s prove that
⋂

n=1
∞

Jn = [1, 2]. Indeed, for any n> 1, one has

1− 1

n2
6 1< 2 6n + 1

therefore for any n > 1 [1, 2] ⊂ Jn, and thus [1, 2] ⊂
⋂

n=1
∞

Jn. Now for the reverse inclu-

sion, observe that any x > 2 is not in J1 so it can’t be in
⋂

n=1
∞

Jn.It remains to show
that any x < 1 cannot be in the intersection. Pick any x < 1, we will be done if we can

find a natural number n > 1 such that x = 1 − (1 − x) < 1 − 1

n
2

< 1, or equivalently such

that
1

n
2

< (1 − x). But the archimedean property implies the existence of an integer n

such that n >
1

1−x

, therefore one has
1

n
2
6

1

n

< 1− x and we are done.

2. Second version: Let’s prove that
⋂

n=1
∞

Jn = [0, 1].For the first inclusion, for any n > 1
one has

1−n 6 0< 1 6 1 +
1

n2

Therefore we already know that [0, 1] ⊂
⋂

n=1
∞

Jn. Any x < 0 is not in J1 so it can’t be in
the intersection. It remains to prove that any x > 1 cannot be in the intersection. In
order to do this it is enough to find some natural number n > 1 such that the following is

true 1 6 1 +
1

n
2

6 1 +
1

n

< x, but this is a consequence of the archimedean property

(because there exists a natural number n >
1

x − 1
).
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