
Homework assignment 9Section 6.2 pp. 189
Exercise 1. In each of the following cases, let T be the linear operator on R2

which is represented by the matrix A in the standard ordered basis for R2, and
let U be the linear operator on C2 represented by A in the standard ordered basis.
Find the characteristic polynomial for T and that for U , find the characteristic
values of each operator, and for each such characteristic value c find a basis for
the corresponding space of characteristic vectors.

A =

(
1 0
0 0

)
A =

(
2 3
−1 1

)
A =

(
1 1
1 1

)

Solution:In all cases, denote by Bc the basis for the subspace corresponding
to the characteristic value c

First matrix The characteristic polynomial is x(x− 1). The roots are 0 and 1. B0 = {(0, 1)}
and B1 = {(1, 0)}. In this case the real and complex cases are the same.

Second matrix The characteristic polynomial is 5 − 3x + x2 which has no real roots. The
complex eigenvalues are 3
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√
11)} and
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2

√
11 = {(1,−1
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6

√
11)}

Third matrix The characteristic polynomial is x2−2x. The roots are 0 and 2. B0 = {(−1, 1)}
and B2 = {(1, 1)}. In this case the real and complex cases are the same.

Exercise 4. Let T be the linear operator on R3 which is represented in the
standard ordered basis by the matrix



−9 4 4
−8 3 4
−16 8 7


 .

Prove that T is diagonalizable by exhibiting a basis for R3, each vector of which
is a characteristic vector of T .Solution: The characteristic polynomial of T is (x+1)2(x−3). The characteristic
values are −1 and 3. B−1 = {(0, 1,−1), (1, 0, 2)} and B3 = {(1, 1, 2)}. B−1 ∪ B3 is a
basis for R3.Exercise 5. Let

A =




6 −3 −2
4 −1 −2
10 −5 −3




Is A similar over the field R to a diagonal matrix? Is A similar over the field C to
a diagonal matrix?

Solution: The characteristic polynomial of A is −2+x−2x2+x3 which has roots
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2, i and −i. Therefore A is not similar over R to a diagonal matrix, by theorem 2.
Also by theorem 2 we get that A is similar to a diagonal matrix over C.

Exercise 8. Let A and B be n × n matrices over the field F . Prove that if
I − AB is invertible, then I −BA is invertible and

(I −BA)−1 = I + B(I − AB)−1A

Solution: Using the expression we are given, we get:

(I −BA)(I + B(I − AB)−1A) = I −BA + B(I − AB)−1A−BAB(I − AB)−1A

After the I we can factor B on the left and A on the right, and we get:

(I −BA)(I + B(I − AB)−1A) = I −B[−I + (I − AB)−1 − AB(I − AB)−1]A =

I −B[−I + (I − AB)(I − AB)−1]A = I + 0 = I

Exercise 9. Use the result of Exercise 8 to prove that, if A and B are n × n
matrices over the field F , then AB and BA have the same characteristic values
in F .Solution: We have to show that if x is a characteristic value for AB then x is a
characteristic value for BA (and conversely). This is equivalent to the statement,
if x is not a characteristic value for BA then it is not a characteristic value for
AB. We will prove this last statement.
Suppose that x is not a characteristic value for BA, this means that det(xI−BA) 6=
0. There are two cases:

Case 1: x = 0. In this case det(−BA) 6= 0. But det(−BA) = (−1)n det(B) det(A) =
(−1)n det(A) det(B) = det(−AB) = det(xI − AB). Therefore det(xI − AB) 6= 0.

Case 2: x 6= 0. In this case xI−BA = x(I− 1
x
BA) and det(x(I− 1

x
BA)) = xn det(I− 1

x
BA) 6=

0. Therefore I − 1
x
BA is invertible, but this implies (by the previous exercise)

that I − A 1
x
B = I − 1

x
AB is invertible, therefore det(I − 1

x
AB) 6= 0, therefore

xn det(I − 1
x
AB) = det(xI − AB) 6= 0.

Exercise 13. Let V be the vector space of all functions from R to R that are
continuous, i.e. the space of all continuous real-valued functions on the real
line. Let T be the linear operator on V defined by

T (f) =

∫ x

0

f(t)dt.

Prove that T has no characteristic values.

Solution: Suppose that T has a characteristic value, i.e.
∫ x

0

f(t)dt = cf(x)
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for some f not identically zero. Notice that if c = 0 then f is identically zero by
the mean value theorem why?. Therefore c 6= 0. Define x0 = sup x ∈ R | f(x) = 0.
If x0 < ∞, by continuity there exists ε > 0 such that f(x) > 0 (or f(x) < 0) if
x0 < x < x + ε. In that neighborhood we have the differential equation

f ′(x) = cf(x)

with initial condition f(x0) = 0. This equation has the solution f(x) = Ke
1
c
x. But

the initial condition implies that K = 0. Therefore f(x) ≡ 0 in the neighborhood
x0 ≤ x ≤ x0 + ε. Therefore x0 = ∞ i.e. f ≡ 0 on the positive real axis. Analogously
f ≡ 0 on the negative real axis. This contradicts the supposition that f is a
characteristic vector.
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