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SECTION 3.7 PP LLs
€ Xepcise 2-
Let V be the vector space of all polynomial functions over the field of real

numbers. Let ¢ and b be fixed real numbers and let f be the linear functional on
V defined by

f(z) = / p(a)de

If D is the differentiation operator on V, what is D’ f?
solar 10N: By the fundamental theorem of calculus, we get:

D'f(q) = F(D(q)) = / ¢ (x)dz = q(b) - q(a)

€ XepRcise 3- Let V be the space of all n x n matrices over a field I and let B be
a fixed n x n matrix. If 7" is the linear operator on V defined by 7(A) = AB — BA
and if f is the trace function, what is 7" f?

solar 10N: Using the result from the previous hw. tr(AB) = tr(BA) we get:
T'f(A) = f(T(A)) = tr(T(A)) = tr(AB — BA) = tr(AB) — tr(BA) =0

€ Xepcise 6- Let n be a positive integer and let V be the space of all polyno-
mial functions over the field of real numbers which have degree at most n, i.e.,
functions of the form

flx)=co+ ...+ cpa”

Let D be the differentiation operator on V. Find a basis for the null space of the
transpose D'.

solar 10N: Since (D')! = D (not equal, but canonically identified, dimV < o),
using theorem 22 we get that the range of D = (D')! is the annihilator of the
null space of D'. But we know from the last Hw that the range of D consists
of all polynomials of degree strictly less than n. Therefore, the null space of D'
consists of all functionals which vanish on polynomials which only contain terms
of degree n. A basis for this space is {f} where f(co+ - -- + ¢,2") = ¢,,. The explicit
calculation done in the recitation yields the same result.

€Xepcise 7- Let V be a finite dimensional vector space over the field F'. Show
that 7' — T" is an isomorphism of L(V,V) onto L(V*, V*).

SOLGTlON: Let ¢ : L(V,V) — L(V*,V*) be given by ¢(T') = T*. Using the definition
of the transpose we get that ¢ is linear. At this point we can either check that
¢ is one to one and onto or find an inverse for ¢. Let us do the latter. Using
the canonical identification of V' with (VV*)* (here is where we use the fact that
V' is finite dimensional) we define ¢ : L(V*, V*) — L((V*)*, (V*)*) = L(V,V) by the
formula ¢ (S) = S*. Using the definitions and the canonical identification we get
that Y o¢p=Idand ¢pop = Id
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€ XeRcise 5 Let A be a 2 x 2 matrix over a field /., and suppose that A% = 0.
Show for each scalar c that det(cI — A) = ¢?

SOL(ITION: Multiplying ¢/ — A times A we get A(cI — A) = cA — A? = cA, therefore

det(A) det(cI — A) = ¢* det(A)

so if det(A) # 0 we get the result. Suppose now that det(A) =0 and A = (Z y).

w
Then det(cI — A) = ¢ — ¢(z +w) + det(A) = ¢ — ¢(x +w). Notice that since det(A4) =0
0 = tr(A?) = (x + w)? therefore r + w = 0 and we get the identity.
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€ X€ERC1ISE 3+ An n x n matrix A over a field F' is skew-symmetric if A' = —A.
If A is a skew-symmetric n x n matrix with complex entries and n is odd, prove
that det(A4) =0

solatioN: We know that det(4) = det(A’) and that det(cA) = ¢" det(A). Thus,
since n is odd det(A) = det(A?) = det(—A) = det((—1)A4) = (—1)"det(A) = —det(A)
therefore 2det(A) = 0, but over C this implies that det(A4) =0

€ XERC1ISE 4- An n xn matrix over a field ' is called orthogonal if AA" = . If
A is orthogonal show that det(A) = £1. Give an example of an orthogonal matrix
for which det(A) = —

solation: Since det(A) = det(A), we get det(I) = det(AA") = det(A) det(A) =
det(A)? = 1. Therefore det(A) = +1. An example with determinant equal to —1 is:

01
= (1o)
€Xepcise 5. An n x n matrix A over the field of complex numbers is said to

be unitary if AA* = [ (A* denotes the conjugate transpose of A). If A is unitary,
show that | det(A)| = 1.

solar 10N: Notice that if p(z) is a complex polynomial p(z) = p(z) (taking the

conjugate commutes with taking sums and products). Therefore det(A) = det(A)
(the determinant is a polynomial in the entries of the matrix). Thus, we get
det(A*) = det(4A") = det(A) = det(A). This implies that 1 = det(I) = det(AA*) =
det(A) det(A*) = det(A)det(A) = | det(A)|.




