homework assignment 3

pp· 39-40

 \mathbf{E} xepcise $\mathbf{l} \cdot \mathbf{W}$ hich of the following sets S of vectors $\alpha = (a_1, \dots, a_n) \in \mathbb{R}^n$ are subspaces of \mathbb{R}^n ($n \geq 3$)? (a) all α such that $a_1 \geq 0$; No. Take $\alpha = (1, 0, ..., 0) \in S$, then $(-\alpha) = (-1, 0, ..., n) \notin S$. (b) all α such that $a_1 + 3a_2 = a_3$; Yes. If $\alpha = (a_1, ..., a_n), \beta = (b_1, ..., b_n) \in S$, then $\alpha + \beta$, $\lambda \alpha \in S$, since $(a_1 + b_1) + 3(a_2 + b_2) =$ $= (a_1 + 3a_2) + (b_1 + 3b_2) = a_3 + b_3$ and $\lambda a_1 + 3\lambda a_2 = \lambda(a_1 + 3a_3) = \lambda a_2$. (c) all α such that $a_2 = a_1^2$; No. Take $\alpha = (1, 1, 0, \dots, 0) \in S$, then $2\alpha = (2, 2, 0, \dots, 0) \notin S$. (d) all α such that $a_1a_2 = 0$; No. Take $\alpha = (0, 1, 0, \dots, 0), \beta = (1, 0, \dots, 0) \in S$, then $\alpha + \beta = (1, 1, 0, \dots, 0) \notin S$. No. Take $\alpha = (0, 1, 0, \dots, 0),$ (e) all α such that a_2 is rational. then $\sqrt{2\alpha} \notin S$. exepcise 2. Let V be the (real) vector space of all functions f from \mathbb{R} into \mathbb{R} . Which of the following sets of functions are subspaces of *V*? (a) all f such that $f(x^2) = f(x)^2$; No. Take a constant function f(x) = 1 for all x. Then $f \in S$, but $2f \in S$. (b) all f such that f(0) = f(1); Yes. If $f, g \in S$, then $f + g, \lambda g \in S$, since (f+g)(0) = f(0) + g(0) = f(1) + g(1) =(f+g)(1), and $\lambda f(0) = \lambda f(1)$. (c) all f such that No. Take a function f such that f(3) = 1 and f(3) = 1 + f(-5);f(x) = 0 for all $x \neq 3$. Then $f \in S$, but $2f \notin S$. (d) all f such that f(-1) = 0Yes. If $f, g \in S$, then $f + g, \lambda g \in S$, since (f+g)(-1) = f(-1) + g(-1) = 0and $\lambda f(-1) = \lambda 0 = 0$. Yes. The linear combination of continuous functions (e) all f that are continuous. is a continuous function (although to prove it rigorously you need calculus not linear algebra). **Exercise 4**. Let W be the set of all vectors $(x_1, x_2, x_3, x_4, x_5)$ in \mathbb{R}^5 which

Exercise 4. Let W be the set of all vectors $(x_1, x_2, x_3, x_4, x_5)$ in \mathbb{R}^5 which satisfy

Find a finite set of vectors that spans W.

solation: The system of equations corresponds to the matrix

$$A = \begin{pmatrix} 2 & -1 & \frac{4}{3} & -1 & 0\\ 1 & 0 & \frac{2}{3} & 0 & -1\\ 9 & -3 & 6 & -3 & -3 \end{pmatrix}$$

Row reducing this matrix we obtain

$$A = \begin{pmatrix} 1 & 0 & \frac{2}{3} & 0 & -1 \\ 0 & 1 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

which is equivalent to the conditions $x_2 = -x_4 + 2x_5$ and $x_1 = -\frac{2}{3}x_3 + x_5$. Therefore x_3, x_4 and x_5 can take any value, the conditions are only imposed on x_1 and x_2 . Thus we expect 3 vectors to generate the solution space. The following vectors form a basis:

$$\left(-\frac{2}{3}, 0, 1, 0, 0\right), \quad (0, -1, 0, 1, 0), \quad (1, 2, 0, 0, 1)$$

EXERCISE 7. Let W_1 and W_2 be subspaces of a vector space such that the set-theoretic union of W_1 and W_2 is also a subspace. Prove that one of the spaces W_i is contained in the other.

Solution: We must show that $W_1 \not\subseteq W_2$ implies that $W_2 \subseteq W_1$ (*why?*). Suppose then that there exists a vector $w_1 \in W_1$ such that $w_1 \notin W_2$. Now let w_2 be any vector in W_2 . We know that $w_1 + w_2 \in W_1 \cup W_2$ since $W_1 \cup W_2$ is a subspace, but this means that either

1.
$$w_1 + w_2 \in W_1$$
 or

2.
$$w_1 + w_2 \in W_2$$

but the second statement leads to a contradiction: Since $-w_2 \in W_2$ we must have $(w_1 + w_2) - w_2 \in W_2$ i.e. $w_1 \in W_2$ which is impossible. Therefore the first statement must be true, but then, since $-w_1 \in W_1$ we must have $(w_1 + w_2) - w_1 \in W_1$ i.e. $w_2 \in W_1$. Hence $W_2 \subset W_1$

EXERCISE 8. Let *V* be the vector space of all functions from \mathbb{R} into \mathbb{R} ; let V_e be the subset of even functions, f(-x) = f(x); let V_o be the subset of odd functions f(-x) = -f(x).

- (a) Prove that V_e and V_o are subspaces of V.
- (b) Prove that $V_e + V_o = V$
- (c) Prove that $V_e \cap V_o = \{0\}$

Solation:

- (a) We will do the case of V_e (the case of V_o is analogous). V_e is not empty since the zero function 0(x) = 0 is an element of V_e . Let f and g be two functions of V_e and let c be any real number. Then $(f + cg)(-x) = f(-x) + c \cdot g(-x) =$ $f(x) + c \cdot g(x) = (f + cg)(x)$
- (b) Let f be any function in V. Define the following functions $f_e(x) = \frac{1}{2}(f(x) + f(-x))$ and $f_o(x) = \frac{1}{2}(f(x) f(-x))$. f_e is an even function, and f_o is an odd function (*check it!*) and we have $f = f_e + f_o$

(c) Let f be a function in $V_e \cap V_o$ and let x be any real number. Since $f \in V_e$ we must have f(x) = f(-x) but since $f \in V_o$ we must have f(x) = -f(-x). Therefore f(x) = -f(x) but then 2f(x) = 0 thus f(x) = 0. That is, f is the zero function.

pp· 48-49 exepcise 2· Are the vectors

$$\alpha_1 = (1, 1, 2, 4) \quad \alpha_2 = (2, -1, -5, 2)
\alpha_3 = (1, -1, -4, 0) \quad \alpha_4 = (2, 1, 1, 6).$$

linearly independent in \mathbb{R}^4 ?

Solution: No, the space they span is 2-dimensional, this is proved in exercise 3.

EXERCISE 3. Find a basis for the subspace of \mathbb{R}^4 spanned by the vectors

$$\alpha_1 = (1, 1, 2, 4) \quad \alpha_2 = (2, -1, -5, 2)
\alpha_3 = (1, -1, -4, 0) \quad \alpha_4 = (2, 1, 1, 6).$$

Solution: Let *A* be the matrix with the α_i as its row vectors, i.e.

$$A = \begin{pmatrix} 1 & 1 & 2 & 4 \\ 2 & -1 & -5 & 2 \\ 1 & -1 & -4 & 0 \\ 2 & 1 & 1 & 6 \end{pmatrix}$$

Row reducing A we obtain

$$\begin{pmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 3 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Therefore a basis for the span of the α_i 's is $\{(1, 0, -1, -2), (0, 1, 3, 2)\}$.

EXERCISE 6. Let *V* be the vector space of all 2×2 matrices over the field *F*. Prove that *V* has dimension 4 by exhibiting a basis for *V* that has four elements. **Solution**: Let

$$\mathfrak{B} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$

 $e_{xepcise 7}$. Let *V* be the vector space of Exercise 6. Let W_1 be the set of matrices of the form

$$\begin{pmatrix} x & -x \\ y & z \end{pmatrix},$$

and W_2 set of matrices of the form

$$\begin{pmatrix} a & b \\ -a & c \end{pmatrix}.$$

- (a) Prove that W_1 and W_2 are subspaces of V.
- (b) Find the dimensions of $W_1, W_2, W_1 + W_2$, and $W_1 \cap W_2$.

Solution: The following set is a basis for W_1 :

$$\mathfrak{B} = \left\{ \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$

Therefore W_1 has dimension 3, analogously W_2 has dimension 3. Given any 2×2 matrix

$$A = \begin{pmatrix} f & g \\ h & i \end{pmatrix}$$

we can write it as the sum of an element in W_1 and an element in W_2 , namely

$$A = \begin{pmatrix} f & g \\ h & i \end{pmatrix} = \begin{pmatrix} f & -f \\ h & i \end{pmatrix} + \begin{pmatrix} 0 & g+f \\ 0 & 0 \end{pmatrix}$$

Hence, dim $(W_1 + W_2) = 4$. Using the formula for calculating the dimension we get dim $(W_1 \cap W_2) = 2$.

EXERCISE 12. Prove that the space of all $m \times n$ matrices over the field *F* has dimension mn by exhibiting a basis for this space.

Solution: Let A_{ij} be the $m \times n$ matrix whose entries are all zero except for the entry $\{i, j\}$ which is one. Then $\{A_{ij}\}$ is a basis for the space of all $m \times n$ matrices.