
Homework assignment 2p 21Exercise 2. Let

A =




1 −1 1
2 0 1
3 0 1


 , B =




2 −2
1 3
4 4




Verify directly that A(AB) = A2B

Solution:
A2 =




2 −1 1
5 −2 3
6 −3 4


 , A2B =




7 −3
20 −4
25 −5




AB =




5 −1
8 0
10 −2


 , A(AB) =




7 −3
20 −4
25 −5




Exercise 3. Find two different 2× 2 matrices A such that A2 = 0 but A 6= 0.

Solution: Let

A =

(
a b
c d

)

be a 2× 2 matrix. Then

A2 =

(
a2 + bc (a + d)b
(a + d)c d2 + bc

)
.

Now find a, b, c, d such that a2 + bc = (a + d)b = (a + d)c = d2 + bc = 0. Note that if
a + d = 0 and ad− bc = 0, then all these equations are satisfied. For instance, put
a = −d = 1, b = −c = 1 or put a = d = 0, b = 0, c = 1. Then the matrices

(
1 1
−1 −1

)
,

(
0 1
0 0

)

are not 0 but their squares are 0.Exercise 4. For the matrix A of Exercise 2, find elementary matrices
E1, E2, . . . , Ek such that

Ek · · ·E2 · E1 · A = I
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Solution: Let us first row-reduce A into the identity matrix:

A
−2·I+II +3




1 −1 1
0 2 −1
3 0 1


−3·I+III+3




1 −1 1
0 2 −1
0 3 −2


 1

2
·II

+3




1 −1 1
0 1 −1

2

0 3 −2


−3·II+III+3




1 −1 1
0 1 −1

2

0 0 −1
2


−2·III+3




1 −1 1
0 1 −1

2

0 0 1


− 1

2
·III+II

+3




1 −1 1
0 1 0
0 0 1


−1·III+I+3




1 −1 0
0 1 0
0 0 1


 1·II+I +3




1 0 0
0 1 0
0 0 1




Applying the transformation on top of each arrow to the identity matrix, we
obtain the elementary transformations we want. For example, E1 is obtained by
applying −2 · I + II to the identity matrix, therefore:

E1 =




1 0 0
−2 1 0
0 0 1




Analogously we obtain all the other matrices, the last one is

E8 =




1 1 0
0 1 0
0 0 1




Exercise 7. Let A and B be 2 × 2 matrices such that AB = I. Prove that
BA = I.Solution:

First proof: Let

A =

(
a b
c d

)
, B =

(
x1 x2

x3 x4

)
.

Consider xi as unknowns, and a, b, c, d as coefficients. Since AB = I, the un-
knowns x1, x3 satisfy the following 2 linear equations

ax1 +bx3 = 1
cx1 +dx3 = 0,

while the unknowns x2, x4 satify the equations

ax2 +bx4 = 0
cx2 +dx4 = 1.
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Solving these two systems one gets that x1 = d
ad−bc

, x2 = −b
ad−bc

, x3 = −c
ad−bc

, x4 = a
ad−bc

.
So the elements of the matrix B are uniquely defined by the elements of A. Now
computing

BA =

(
d

ad−bc
−b

ad−bc−c
ad−bc

a
ad−bc

)(
a b
c d

)
,

we get that it is also equal to I.
Second proof: Reduce B to the row reduced echelon matrix B′ by elementary

row operations so that B = E1 . . . EnB′ for some elementary matrices E1, . . . , En.
Then the equality AB = I implies that B′ is invertible from the left. Indeed,

(AE1 . . . En)B′ = I,

so the matrix AE1 . . . En is the left inverse of B′. Let us prove that a 2 × 2 row
reduced echelon matrix that has a left inverse can not have zero rows. Otherwise,
if

B′ =
(

x y
0 0

)

has the bottom row zero, then for any matrix

A′ =
(

a b
c d

)
,

the product

A′B′ =
(

ax ay
cx cy

)

will have two proportional rows, so A′B′ can not be equal to the identity matrix.
Since B′ does not have zero rows, it equals to the identity matrix. Hence, B is the
product of elementary matrices so it also has a right inverse C = E−1

n E−1
n−1 . . . E−1

1

such that BC = I. Now show that A = C. Indeed,

A = AI = A(BC) = (AB)C = IC = C.

Hence, BA=BC=I.pp 26-27Exercise 2. Let

A =




2 0 i
1 −3 −i
o 1 1




Find a row-reduced echelon matrix R which is row-equivalent to A and an in-
vertible 3× 3 matrix P such that R = PA.Solution: A is invertible, therefore we can take R to be the identity matrix and
P = A−1:

A−1 =




1
3

1
30
− i 1

10
1
10
− 3

10
i

0 − 3
10
− 1

10
i 1

10
− 3

10
i

−1
3
i 1

5
+ 1

15
i 3

5
+ 1

5
i
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Exercise 8. Let

A =

(
a b
c d

)
.

Prove, using elementary row operations, that A is invertible if and only if (ad −
bc) 6= 0.

Solution: Start row reducing A. First, note that if A is invertible or ad−bc 6=
0, then either a or c is not zero. Otherwise, A would have a zero column, and for
any 2×2 matrix B the product BA would also have a zero column so that BA 6= I.
By interchanging rows we can assume that a 6= 0. Multiply the first row by c

a
and

subtract it from the second one:
(

a b
0 d− bc

a

)
.

This matrix is invertible if and only if the second row is not zero, which means
d− bc

a
6= 0. The latter is true if and only if ad− bc 6= 0.

Exercise 9. An n × n matrix is called upper-triangular if Aij = 0 for i > j,
that is, if every row below the main diagonal is 0. Prove that an upper-triangular
matrix is invertible if and only if every entry on its main diagonal is different from
0.

Solution: Let A be an upper triangular matrix. First, look at the bottom
row of A. Its only (possibly) non-zero entry is the last one: Ann. So if A is
invertible, then Ann 6= 0. Otherwise, A would have a zero row. By subtracting the
multiples of the bottom row from the other rows we can eliminate all non-zero
entries in the n-th column except for Ann. Doing this will not change the other
columns.

Now look at the (n− 1)st row (it now also has only one possibly non-zero entry
A(n−1)(n−1)) and repeat the same procedure. We get that A(n−1)(n−1) 6= 0. Repeating
this n times we prove that A11, . . . , Ann 6= 0 and that A is equivalent to the diago-
nal matrix with entries A11, . . . , Ann on the diagonal. The latter matrix is clearly
invertible.

Exercise 10. Prove the following generalization of Exercise 6. If A is an
m× n matrix, B is an n×m matrix and m < n, then AB is not invertible.Solution Let

A =




a1,1 . . . a1,m
...

...
an,1 . . . an,m
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And let

Ã =




a1,1 . . . a1,m 0 . . . 0
...

... 0 . . . 0
an,1 . . . an,m 0 . . . 0




where the last n−m entries are zero in each row. Notice that Ã is not invertible,

since any vector of the form X = (

n 0′s︷ ︸︸ ︷
0, . . . , 0,

︷ ︸︸ ︷
x1, . . . , xm−n) is a solution of ÃX = 0.

Also, let Ĩ be the m × n matrix which has the first n rows equal to the n × n
identity matrix, and all other entries equal to zero, i.e.

Ĩ =

(
In×n

0(m−n)×n

)

Notice that A = ÃĨ. Now suppose that AB is invertible, then there exists a matrix
P such that (AB)P = I but then Ã(ĨBP ) = I which implies that Ã is invertible!
(contradiction). Therefore AB is not invertible.pp. 33-34
Exercise 4. Let V be the set of all pairs (x, y) of real numbers, and let F be

the field of real numbers. Define

(x, y)+̂(x1, y1) = (x + x1, y + y1)

c · (x, y) = (cx, y)

Is V with these operations, a vector space over the field of real numbers?
Solution: No. In a vector space we must have a unique vector 0̂ and the
following equation must hold for any vector:

0 · α = 0̂

Notice that with the operations defined above we have

0 · (0, 1) = (0, 1)

and
0 · (0, 3) = (0, 3)

but this two products should be equal to the unique zero vector. Since 1 6= 3 we
are done.Exercise 5 On Rn, define two operations

α⊕ β = α− β

c · α = −c · α
Which of the axioms for a vector space are satisfied by (Rn,⊕, ·) ?

Solution: Addition is not commutative, addition is not associative, there is a
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unique vector 0 (namely, the usual 0 vector), there is a unique inverse for every
α (namely α itself), 1 · α 6= α, c1 · (c2 · α) = c1 · (−c2α) = −c1(−c2α) = c1c2α 6= −c1c2α =
(c1c2)·α , c·(α⊕β) = c·α⊕c·β = c(β−α), (c1+c2)·α = −(c1+c2)·α 6= (c2−c1)·α = c1·α⊕c2·α.Exercise 6. Let V be the set of all complex-valued functions f on the real
line such that (for all t in R)

f(−t) = f(t). (1)

The bar denotes complex conjugation, i.e. a + bi = a− bi. Show that V is a vector
space over the field of real numbers. Give an example of a function in V that is
not real-valued.Solution: First, check that if functions f, g satisfy equation (1), then f + g
and λf for a real λ also satisfy it. This is because complex conjugation commutes
with opeartions of addition and multiplication by real numbers.

(f + g)(−t) = f(−t) + g(−t) = f(t) + g(t) = f(t) + g(t) = (f + g)(t),

(λf)(−t) = λf(−t) = λf(t) = λf(t).

Hence, a subset V of the real vector space of all functions from R to C is closed
under addition and multiplication by real numbers. This means that V is a
subspace and satisfies all properties of a vector space.

An example of a non-real-valued function in V is f(t) = it.
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