MATH 307

Solutions to Midterm 2

1. Let $f(x, y)=\cos (x) \sin \left(x^{2}+y^{2}\right)$.
(a) Calculate the gradient of f when $x=0$ and $y=\frac{\sqrt{\pi}}{2}$.

Solution:

$$
\nabla f(x, y)=\left\langle 2 x \cos (x) \cos \left(x^{2}+y^{2}\right)-\sin (x) \sin \left(x^{2}+y^{2}\right), 2 y \cos (x) \cos \left(x^{2}+y^{2}\right)\right\rangle
$$

At $(0, \sqrt{\pi} / 2)$, this is $\left\langle 0, \frac{\sqrt{\pi}}{\sqrt{2}}\right\rangle$. (Recall that $\sin (0)=0, \cos (0)=1$, and $\cos (\pi / 4)=1 / \sqrt{2}$.)
5 pts.
(b) Write the equation of the plane tangent to the surface $z=f(x, y)$ at the point $\left(0, \frac{\sqrt{\pi}}{2}, \frac{1}{\sqrt{2}}\right)$.

Solution: Recall that the plane tangent to a surface $z=f(x, y)$ satisfies the equation $z=z_{0}+f_{x}\left(x-x_{0}\right)+f_{y}\left(y-y_{0}\right)$. In the current case, we have

$$
z=\frac{1}{\sqrt{2}}+\frac{\sqrt{\pi}}{\sqrt{2}}\left(y-\frac{\sqrt{\pi}}{2}\right) .
$$

5 pts.
(c) A particle is moving along the curve $\gamma(t)=\left\langle\frac{\sqrt{\pi}}{2} \cos t, \frac{\sqrt{\pi}}{2} \sin t\right\rangle$. Find the rate of change of $f(x, y)$ along this curve when $t=\pi / 2$.

Solution: This means we want to find the directional derivative in the direction of the tangent to $\gamma(t)$ at $t=\pi / 2$. Notice that $\gamma(\pi / 2)=\langle 0, \sqrt{\pi} / 2\rangle$, and

$$
\gamma^{\prime}(t)=\left\langle-\frac{\sqrt{\pi}}{2} \sin t, \frac{\sqrt{\pi}}{2} \cos t\right\rangle, \quad \text { so } \quad \gamma^{\prime}(\pi / 2)=\langle-\sqrt{\pi} / 2,0\rangle, \quad \text { and } \quad \frac{\gamma^{\prime}(\pi / 2)}{\left|\gamma^{\prime}(\pi / 2)\right|}=\langle-1,0\rangle .
$$

Since $D_{u} f=(\nabla f) \cdot u$, in the present case we have

$$
\left\langle 0, \frac{\sqrt{\pi}}{\sqrt{2}}\right\rangle \cdot\langle-1,0\rangle=0 .
$$

This should not be surprising: the curve is traveling parallel to the x-axis at this point, and from the previous part, the tangent plane is tilted only in the y direction. Thus, the value of $f(x, y)$ is not changing at this point.

15 pts. 2. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be given by $f(x, y, z)=x^{2}+y^{2}+z^{2}, \quad g(u, v)=\left(\begin{array}{c}u+v \\ u^{3}-v \\ u-v^{3}\end{array}\right)$. Write the derivative matrix of $f \circ g$ at a point (u, v).

Solution: Applying the chain rule, we have

$$
D_{g}(u, v)=\left(\begin{array}{cc}
1 & 1 \\
3 u^{2} & -1 \\
1 & -3 v^{2}
\end{array}\right) \quad \text { and } \quad D_{f}(x, y, z)=(2 x, 2 y, 2 z)
$$

Thus,

$$
\begin{aligned}
D(f \circ g)(u, v) & =D f\left(u+v, u^{3}-v, u-v^{3}\right) D g(u, v) \\
& =\left(2 u+2 v, 2 u^{3}-2 v, 2 u-2 v^{3}\right)\left(\begin{array}{cc}
1 & 1 \\
3 u^{2} & -1 \\
1 & -3 v^{2}
\end{array}\right) \\
& =\left(4 u+2 v+6 u^{5}-6 u^{3} v-2 v^{3}, 2 u+4 v-2 u^{3}-6 u v^{2}+6 v^{5}\right)
\end{aligned}
$$

If you prefer, you could write the composition

$$
f \circ g(u, v)=(u+v)^{2}+\left(u^{3}-v\right)^{2}+\left(u-v^{3}\right)^{2}
$$

and then compute the gradient to get

$$
\begin{aligned}
\langle 2(u+v) & \left.+2\left(u^{3}-v\right)\left(3 u^{2}\right)+2\left(u-v^{3}\right), 2(u+v)-2\left(u^{3}-v\right)+2\left(u-v^{3}\right)\left(-3 v^{2}\right)\right\rangle \\
& =\left\langle 4 u+2 v+6 u^{5}-6 u^{3} v-2 v^{3}, 2 u+4 v-2 u^{3}-6 u v^{2}+6 v^{5}\right\rangle
\end{aligned}
$$

15 pts. 3. Let $f(x, y)=\left\{\begin{array}{ll}\frac{x^{3}-y^{3}}{x^{2}+y^{2}} & \text { if } x^{2}+y^{2} \neq 0 \\ 0 & \text { if } x^{2}+y^{2}=0\end{array}\right.$. Is $f(x, y)$ continuous at all $(x, y) \in \mathbb{R}^{2}$? If not, identify any discontinuities. Justify your answer fully.

Solution: This is continuous at all points of \mathbb{R}^{2}. The only potential issue is near the origin, but it isn't hard to see that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0$.
Perhaps the easiest way is to rewrite the function in polar coordinates.
Let $x=r \cos \theta, y=r \sin \theta$, so $f(x, y)$ becomes

$$
\frac{r^{3} \cos ^{3} \theta-r^{3} \sin ^{3} \theta}{r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta}=\frac{r^{2}}{r^{2}} \cdot \frac{\cos ^{3} \theta-\sin ^{3} \theta}{1}=r\left(\cos ^{3} \theta-\sin ^{3} \theta\right)
$$

This obviously tends to 0 as $r \rightarrow 0$, no matter what θ does.

15 pts. 4. Two surfaces are given by $f(x, y, z)=0$ and $g(x, y, z)=0$, where

$$
\begin{aligned}
& f(x, y, z)=x^{2}+2 y^{2}+3 z^{2}-6 \\
& g(x, y, z)=x^{2}+y^{2}-z^{2}-1
\end{aligned}
$$

Let $\gamma(t)$ be the curve where they intersect.
Determine the line tangent to γ at $(1,1,1)$.
(Note: it is not necessary to determine $\gamma(t)$, but you may.)

Solution: Implicit differentiation gives us (writing x^{\prime} for $d x / d t$, etc.):

$$
2 x x^{\prime}+4 y y^{\prime}+6 z z^{\prime}=0 \quad 2 x x^{\prime}+2 y y^{\prime}-2 z z^{\prime}=0
$$

Evaluating at $(1,1,1)$ and dividing by 2 gives

$$
x^{\prime}+2 y^{\prime}+3 z^{\prime}=0 \quad x^{\prime}+y^{\prime}-z^{\prime}=0
$$

so $y^{\prime}=-4 z^{\prime}$ and $x^{\prime}=5 z^{\prime}$. Thus, $\langle 5,-4,1\rangle$ will be tangent to the curve of intersection, and the tangent line can be written as

$$
\langle 1,1,1\rangle+t\langle 5,-4,1\rangle
$$

Alternatively, if you prefered to find $\gamma(t)$, we can do the following. You might have a minor variation that gives an equivalent answer.
First, if we set $f(x, y, z)=g(x, y, z)$, we obtain

$$
y^{2}+4 z^{2}-5=0, \quad \text { or } \quad y^{2}=5-4 z^{2}
$$

Substituting this back into $g(x, y, z)=0$ yields

$$
x^{2}+\left(5-4 z^{2}\right)-z^{2}-1=0, \quad \text { or } \quad x^{2}=5 z^{2}-4
$$

Putting these two together, and letting $z^{2}=t$ gives us

$$
\gamma(t)=\langle 5 t-4,5-4 t, t\rangle, \quad \text { with } \quad \gamma(1)=\langle 1,1,1\rangle .
$$

Hence $\gamma^{\prime}(1)=\langle 5,-4,1\rangle$. The tangent line at $t=1$ can be written as $\langle 1,1,1\rangle+t\langle 5,-4,1\rangle$, just as via implicit differentiation.
Note that we cannot just take the partials of $f(x, y, z)-g(x, y, z)$ and plug in $(1,1,1)$; a few people tried this.
You could, however, observe that the tangent line to $\gamma(t)$ lies in both tangent planes to f and g. Thus, you could find the normals $\nabla f(1,1,1)=\langle 2,4,6\rangle$ and $\nabla g(1,1,1)=\langle 2,2,-2\rangle$. Then their cross product is $\langle 20,-16,4\rangle$, and so the tangent line can be written as $\langle 1,1,1\rangle+$ $s\langle 20,-16,4\rangle$.

15 pts. 5. Find the point on the sphere $x^{2}+y^{2}+z^{2}=1$ which is furthest from the point $(1,2,3)$.

Solution: The easiest way to do this problem is to notice that the solution must lie on the line $\langle t, 2 t, 3 t\rangle$. We also require $x^{2}+y^{2}+z^{2}=1$, so the answer must be $\left(\frac{-1}{\sqrt{14}}, \frac{-2}{\sqrt{14}}, \frac{-3}{\sqrt{14}}\right)$. If you want to work harder, you could use Lagrange multipliers. We want to maximize $f(x, y, z)=(x-1)^{2}+(y-2)^{2}+(z-3)^{2}$ subject to the constraint $g(x, y, z)=x^{2}+y^{2}+z^{2}-1=0$. Hence, we find the solutions to $\nabla f+\lambda \nabla g=0$. We have

$$
2(x-1)+2 \lambda x=0 \quad 2(y-2)+2 \lambda y=0 \quad 2(z-3)+2 \lambda z=0
$$

so $x=\frac{1}{1-\lambda}, y=\frac{2}{1-\lambda}, z=\frac{3}{1-\lambda}$. Since we need $x^{2}+y^{2}+z^{2}=1$, we get $\left(\frac{-1}{\sqrt{14}}, \frac{-2}{\sqrt{14}}, \frac{-3}{\sqrt{14}}\right)$ as the maximum.

15 pts. 6. Find all of the critical points of $x^{3}-6 x y-6 y^{2}$. For each, state whether it is a local minimum, local maximum, or neither.

Solution: We calculate the gradient as $\left\langle 3 x^{2}-6 y,-6 x-12 y\right\rangle$. Thus, we must have

$$
3 x^{2}-6 y=0 \quad-6 x-12 y=0
$$

or $x^{2}=2 y, x=-2 y$. Hence $4 y^{2}-2 y=0$, and so $y=0$ or $y=1 / 2$. This means the only critical points are $(0,0)$ and $(-1,1 / 2)$.

Note that $f_{x x}(x, y)=6 x, f_{y y}(x, y)=-12$, and $f_{x y}(x, y)=-6$.
At $(0,0)$, the discriminant $f_{x x} f_{y y}-f_{x y}^{2}=-36<$ 0 , so this is a saddle point.
At $(-1,1 / 2), f_{x x} f_{y y}-f_{x y}^{2}=+36$, and both $f_{x x}$ and $f_{y y}$ are negative. Thus $(-1,1 / 2)$ is a local maximum.

A picture of the surface is at right. Note that the x-axis increases to the left in the picture. (sorry, it is too hard to see otherwise.)

