There are seven questions, of varying point-value.
Each question is worth the indicated number of points.

1. \((15 \text{ points})\) If \(X\) is uncountable and \(A \subseteq X\) is countable, prove that \(X - A\) is uncountable. What does this tell us about the set of irrational real numbers?

 A set is called \textit{countable} if it is either finite or denumerable. A set \(Y\) is countable if and only if there exists an injection \(f: Y \rightarrow \mathbb{Z}^+\).

 Our hypotheses say that \(A\) is countable and that \(X\) is uncountable. We now proceed via proof by contradiction. If \(X - A\) were countable, there would be an injection \(f: (X - A) \rightarrow \mathbb{Z}^+\). Since \(A\) is countable by hypothesis, there is certainly an injection \(g: A \rightarrow \mathbb{Z}^+\). The function \(h: X \rightarrow \mathbb{Z}^+\) defined by

 \[
 h(x) = \begin{cases}
 2g(x), & \text{if } x \in A \\
 2f(x) + 1, & \text{if } x \in (X - A)
 \end{cases}
 \]

 would then be injective, sending distinct elements of \(A\) to distinct even integers and distinct elements of \(X - A\) to distinct odd integers. Thus \(X\) would be countable, in contradiction to our hypothesis. This shows that \(X - A\) must be uncountable.

 As an application, we now consider the example given by \(X = \mathbb{R}\) and \(A = \mathbb{Q}\). Since Cantor proved that the set \(\mathbb{R}\) of real numbers is uncountable, and since the set \(\mathbb{Q}\) of rational number is countable, it follows that the set \(\mathbb{R} - \mathbb{Q}\) of irrational real numbers is uncountable.
2. (15 points) Prove by induction that

\[\sum_{k=1}^{n} k^3 = \frac{(n+1)^2n^2}{4} \]

for every positive integer \(n \).

For any \(n \in \mathbb{Z}^+ \), let \(P(n) \) be the statement that

\[\sum_{k=1}^{n} k^3 = \frac{(n+1)^2n^2}{4} \]

The base case \(P(1) \) then says that

\[1^3 = \frac{2^2 \cdot 1}{4}, \]

which is certainly true.

We now need to prove that \(P(m) \implies P(m+1) \) for any positive integer \(m \). Thus, suppose that

\[\sum_{k=1}^{m} k^3 = \frac{(m+1)^2m^2}{4} \]

holds for some positive integer \(m \). It then follows that

\[
\begin{align*}
\sum_{k=1}^{m+1} k^3 &= \left(\sum_{k=1}^{m} k^3 \right) + (m+1)^3 \\
&= \frac{(m+1)^2m^2}{4} + (m+1)^3 \\
&= \frac{m^2(m+1)^2 + 4(m+1)(m+1)^2}{4} \\
&= \frac{(m^2 + 4m + 4)(m+1)^2}{4} \\
&= \frac{(m + 2)^2(m + 1)^2}{4}
\end{align*}
\]

so we have shown that the statement \(P(m+1) \) is a logical consequence of the statement \(P(m) \).

By the principle of induction, \(P(n) \) therefore holds for all \(n \in \mathbb{Z}^+ \).
3. (15 points) Let X and Y be finite sets, with $|X| = n \geq 3$ and $|Y| = 3$. Compute

$$\left| \left\{ f : X \to Y \mid f \text{ surjective} \right\} \right|.$$

Hint: How many f aren’t surjective? Use the inclusion/exclusion principle.

Let y_j, $j = 1, 2, 3$, denote the three elements of Y, so that

$$Y = \{y_1, y_2, y_3\}.$$

For $j = 1, 2, 3$, let A_j be the set of all functions $f : X \to Y - \{y_j\}$. Thus

$$A_j = \{f : X \to Y \mid y_j \notin f(X)\}.$$

We then have

$$A_1 \cup A_2 \cup A_3 = \{f : X \to Y \mid f \text{ is not surjective}\}.$$

Now

$$|A_j| = |Y - \{y_j\}|^{|X|} = 2^n$$

for each j. Similarly

$$|A_j \cap A_k| = 1$$

for each $j \neq k$, and

$$A_1 \cap A_2 \cap A_3 = \emptyset.$$

The inclusion/exclusion principle therefore implies that

$$|A_1 \cup A_2 \cup A_3| = \sum_j |A_j| - \sum_{j<k} |A_j \cap A_k| + |A_1 \cap A_2 \cap A_3|$$

$$= 3 \cdot 2^n - 3$$

Since

$$|\{f : X \to Y\}| = |Y|^{|X|} = 3^n$$

we therefore have

$$\left| \left\{ f : X \to Y \mid f \text{ surjective} \right\} \right| = 3^n - (3 \cdot 2^n - 3) = 3(3^{n-1} - 2^n + 1).$$
4. (15 points) Let A and B be distinct points in the plane. Assuming the axioms of Euclidean geometry, prove that the set

\[\mathbb{L} = \left\{ C \in \text{Plane} \mid |AC| = |BC| \right\} \]

is a line.

Hint: First show that there is a unique line \(\ell \) through the mid-point of \(\overline{AB} \) which meets \(\overrightarrow{AB} \) in a right angle. Then show that \(\mathbb{L} = \ell \).

By the ruler axiom, the segment \(\overline{AB} \) has a mid-point, which is the unique \(M \in \overrightarrow{AB} \) with \(|AM| = |MB| \). Choose a side of \(\overrightarrow{AB} \), which we treat as the interior of the straight angle \(\angle AMB \).

By the protractor axiom then says that we can find a unique ray \(\overrightarrow{MD} \) on the chosen side of \(\overrightarrow{AB} \) such that \(m\angle AMD = \pi / 2 \).

If \(D' \in \overrightarrow{MD} \) is on the opposite side of \(\overrightarrow{AB} \) from \(D \), we have \(m\angle AMD = m\angle AMD' = m\angle BMD = m\angle BMD' = \pi / 2 \) by vertical and supplementary angles, so we would have therefore constructed exactly the same line \(\overrightarrow{MD} \) if we had instead chosen the opposite side of \(\overrightarrow{AB} \), or had interchanged \(A \) and \(B \).

The line \(\ell = \overrightarrow{MD} \) is therefore uniquely defined; it is usually called the perpendicular bisector of \(\overline{AB} \).

Let us next show that \(\mathbb{L} \subseteq \ell \). If \(C \in \mathbb{L} \), then \(|AC| = |BC| \), by the definition of \(\mathbb{L} \). If \(C \in AB \), we then have \(C = M \), so \(C \in \ell = \overrightarrow{MD} \), as claimed. Otherwise, the triangles \(\triangle AMC \) and \(\triangle BMC \) are well defined, as in each case the given vertices are not collinear. However, \(|AC| = |BC| \), \(|AM| = |BM| \) and \(|MC| = |MC| \). Hence \(\triangle AMC \cong \triangle BMC \) by the SSS congruence theorem. Therefore \(m\angle AMC = m\angle BMC \). Since these angles are supplementary, we therefore have \(m\angle AMC = \pi / 2 \). Hence \(M = \ell \), and \(C \in \ell \). Thus \((C \in \mathbb{L}) \implies (C \in \ell) \), and \(\mathbb{L} \subseteq \ell \), as claimed.

We now show that \(\ell \subseteq \mathbb{L} \). If \(C \in \ell \), either \(C = M \), and hence \(C \in \mathbb{L} \), or else \(C \not\in \overline{AB} \). In the latter case, \(\triangle AMC \) and \(\triangle BMC \) are then well defined. Moreover, \(m\angle AMC = m\angle BMC = \pi / 2 \), since \(\ell \) is perpendicular to \(\overrightarrow{AB} \). Moreover, \(|AM| = |BM| \) and \(|MC| = |MC| \). Consequently, \(\triangle AMC \cong \triangle BMC \) by the SAS congruence axiom. Hence \(|AC| = |BC| \), and so \(C \in \mathbb{L} \). That is, \((C \in \ell) \implies (C \in \mathbb{L}) \), and \(\ell \subseteq \mathbb{L} \).

Since \(\mathbb{L} \subseteq \ell \) and \(\ell \subseteq \mathbb{L} \), \(\mathbb{L} = \ell \). In particular, \(\mathbb{L} \) is a line, as claimed.
5. (10 points) Let $n \geq 2$ be an integer. Use modular arithmetic to show that

$$\binom{n}{2} = \frac{n(n-1)}{2}$$

is always an integer, and is even if and only if $n \equiv 0$ or $1 \mod 4$.

The question is equivalent to showing that

$$n(n-1) \equiv 0 \text{ or } 2 \mod 4$$

for any integer n, and that

$$n(n-1) \equiv 0 \mod 4$$

iff $n \equiv 0$ or $1 \mod 4$.

Modulo 4, any integer n is congruent to 0, 1, 2, or 3. Let us tabulate the relevant products of remainders mod 4:

<table>
<thead>
<tr>
<th>n</th>
<th>$n-1$</th>
<th>$n(n-1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Thus $n(n-1) \equiv 0$ or $2 \mod 4$ for any n, and is $\equiv 0 \mod 4$ if and only if $n \equiv 0$ or $1 \mod 4$, exactly as claimed.
6. (20 points) (a) Use modular arithmetic to prove the following:
If \(n \) is an integer, and if \(n^2 \) is divisible by 5, then \(n \) is divisible by 5.

Hint: What is the contrapositive, in terms of congruence mod 5?

We must show that \((n \not\equiv 0 \text{ mod } 5) \implies (n^2 \not\equiv 0 \text{ mod } 5)\). Since any integer is congruent mod 5 to 0, 1, 2, 3, or 4, we merely need to make a table of squares, modulo 5:

<table>
<thead>
<tr>
<th>(n)</th>
<th>(n^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

By direct inspection, we conclude that \(n^2 \not\equiv 0 \text{ mod } 5 \) whenever \(n \not\equiv 0 \text{ mod } 5 \), as claimed.

(b) Use part (a) to prove that there is no rational number \(q \) with \(q^2 = 5 \). Conclude that \(\sqrt{5} \notin \mathbb{Q} \).

Hint: If there were such a \(q \), first argue that it could be expressed as \(a/b \), where at least one of the integers \(a, b \) isn’t divisible by 5.

Any rational number \(q \) may be expressed as a quotient \(a/b \), where \(a \in \mathbb{Z}, b \in \mathbb{Z}^+ \), and by repeatedly cancelling common factors of 5, we may assume that at most one of \(a, b \) is divisible by 5. Now, having done this, let us assume our rational number \(q \) satisfies \(q^2 = 5 \). We then have \(\frac{a^2}{b^2} = 5 \), so that \(a^2 = 5b^2 \) and \(a^2 \equiv 0 \text{ mod } 5 \). But, by part (a), this implies that \(a \equiv 0 \text{ mod } 5 \). Hence \(a = 5n \) for some \(n \in \mathbb{Z} \), and

\[
\frac{25n^2}{b^2} = \frac{a^2}{b^2} = 5
\]

and hence \(b^2 = 5n^2 \). Thus \(b^2 \equiv 0 \text{ mod } 5 \). And part (a), this implies that \(b \equiv 0 \text{ mod } 5 \). That is, both \(a \) and \(b \) are divisible by 5, contradicting our assumption. Hence no such \(q \) exists; that is, \(\sqrt{5} \) cannot be a rational number.
7. (10 points) Let X and Y be sets, and let $f : X \to Y$ be a function. For $a, b \in X$, define the expression

$$a \simeq b$$

to mean that

$$f(a) = f(b).$$

Prove that \simeq is an equivalence relation on X.

We need to verify that \simeq is

(R) reflexive:

(S) symmetric; and

(T) transitive.

Reflexive: Since $f(a) = f(a)$ for any $a \in X$, we always have $a \simeq a$. Thus \simeq is reflexive.

Symmetric: If $f(a) = f(b)$, it follows that $f(b) = f(a)$. Thus $(a \simeq b) \implies (b \simeq a)$, and \simeq is therefore symmetric.

Transitive: If $f(a) = f(b)$ and $f(b) = f(c)$, it follows that $f(a) = f(c)$. Thus $(a \simeq b$ and $b \simeq c) \implies (a \simeq c)$, and \simeq is therefore transitive.

Since the relation \simeq on X is reflexive, symmetric, and transitive, it follows that \simeq is an equivalence relation.