James Mathews

Part I Problems, second set
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12.
Prove by induction on n that, for all positive integers n, 3 divides 
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Prove by induction on n that 
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Prove Bernoulli’s inequality 
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Prove by induction on n that 
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 for all positive integers n.
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For a positive integer n the number 
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, for k a positive integer.
Prove by induction on n, that for all positive integers n, (i) 
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Given a sequence of numbers 
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Prove that 
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20.
Prove that, for a positive integer n, a 
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 square grid with any one square removed can be covered using L-shaped tiles of the following shape:
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21.
Suppose that x is a real number such that 
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 is an integer.  Prove by induction on n that 
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25.
Let 
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 be the nth Fibonacci number.  Prove, by induction on n, that
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Suppose 3 divides 
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But the proposition is true when 
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Suppose 
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The proposition holds for 
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Suppose that 
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And the proposition holds for 
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Suppose that for some positive integer n, 
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.  Then the inductive step is valid, 
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(i)  Suppose that for some integer 
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(ii)  Suppose that for some integer 
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Suppose that for some integer n , 
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The proposition holds for 
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20.
Suppose that for some positive integer n, we may tile a 
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This is an illustration of the inductive step:
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21.
Suppose that x is a real number such that 
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Suppose that for all positive integers m, the proposition holds for two consecutive integers 
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This is mildly puzzling; since m and n are free, doesn’t commutativity permit 
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So every Fibonacci number is the difference of its neighbors.  This is like the exponential function.  To expose the Fibonacci nature of the exponential function, we should show that there must exist some positive b such that 
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So why is the Fibonacci sequence different from the exponential function at all?  Because no two exponential neighbors x and 
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