Some extra problems for MAT 200

October 11, 2002

- 1. Write the negation of each of the following statements (in English, not symbolically).
 - (a) If it rains, then either I will wear a coat or I'll stay home.
 - (b) This function has no inverse, and it is not continuous.
 - (c) In any triangle, the sum of the measure of the angles is less than π .
 - (d) For every $\epsilon > 0$, there is a $\delta > 0$ so that $|f(x) f(y)| < \epsilon$ whenever $0 < |x y| < \delta$.
 - (e) Every natural number has a unique additive inverse.
- 2. Prove or disprove each of the following statements, using only the axioms in Appendix 1. Define the set of integers Z by

$$n \in \mathbb{Z}$$
 if $(n \in \mathbb{N} \text{ or } -n \in \mathbb{N} \text{ or } n=0)$

As usual, we say n is negative if n < 0, and n is positive if n > 0.

- (a) For every integer a and every integer b, a + b is positive and a b is negative.
- (b) There are integers a and b so that a + b is positive and a b is negative.
- (c) For every integer a, there is an integer b so that a + b is positive and a b is negative.
- (d) There is an integer a so that, for every integer b, a + b is positive and a b is negative.
- 3. Consider the following symbolic description of "kinship". Our domain is a set of people, and we have the predicates
 - m(x) means "x is male".
 - f(x) means "x is female".
 - P(x,y) means "x is the parent of y".

We have two axioms:

- (K1) $\forall x \left((m(x) \lor f(x)) \land \sim (m(x) \land f(x)) \right)$
- (K2) $\forall x \exists ! y \exists ! z (P(y, x) \land P(z, x) \land m(y) \land f(z))$
 - (a) State carefully, in common English, the meaning of axiom K1.
 - (b) State carefully, in common English, the meaning of axiom K2.
 - (c) Define the predicate G(x, y) to mean $\exists z (P(y, z) \land P(z, x) \land m(y))$. What is the common English meaning of G(x, y)?
 - (d) What is the meaning, in common English, of the assertion $\forall x \exists y G(x, y)$?
 - (e) Prove that $\forall x \exists y G(x, y)$.
- 4. Prove that for any natural number $n, 4^n 1$ is divisible by 3. (Hint: use induction on n.)