
Solutions to MAT 200 extra problems

October 11, 2002

1. Write the negation of each of the following statements (in English, not symbolically).

(a) If it rains, then either I will wear a coat or I’ll stay home.

Solution: You needn’t translate this to symbols to do this problem, but let me
do so to clarify the reasoning. First, let R be the statement “it rains”, C be “I will
wear a coat”, and H be “I’ll stay home”. Thus, the negation of the statement is

∼ (R ⇒ C ∨H) .

An implication is false (that is, negated) exactly when the hypothesis is true and the
conclusion is false,1 so we get R∧ ∼ (C ∨ H), or equivalently, R∧ ∼ C∧ ∼ H.
Translating back to English, we get

When it rains, I won’t wear a coat and I won’t stay home.

or perhaps you might say

I will go out in the rain without a coat.

(b) This function has no inverse, and it is not continuous.

Solution: This is of the form ∼P∧ ∼Q, which is negated as P ∨Q, so we get

This function is invertible or it is continuous.

I suppose if you wanted to write this as an implication, you could write

If this function has no inverse, then it is continuous.

which is equivalent.

(c) In any triangle, the sum of the measure of the angles is less than π.

Solution: Here we have a statement of the form ∀t P ; the negation of such a
statement is of the form ∃t ∼P . Thus, we get

There is a triangle where the sum of the measure of its angles is at least π.

1If you don’t like that explanation, you can instead use the tautology that P ⇒ Q is equivalent to ∼P ∨Q,
then negate the latter to get P∧ ∼Q.
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(d) For every ε > 0, there is a δ > 0 so that |f(x)−f(y)| < ε whenever 0 < |x−y| < δ.

Solution: This statement is nearly already in symbolic form. The negation is

∼ (∀ε > 0∃δ > 0 (0 < |x− y| < δ ⇒ |f(x)− f(y)| < ε))

Moving the negation in, we get

∃ε > 0∀δ > 0 ∼ (0 < |x− y| < δ ⇒ |f(x)− f(y)| < ε)

and negating the implication gives

∃ε > 0∀δ > 0 (0 < |x− y| < δ ∧ |f(x)− f(y)| ≥ ε)

You may recall from calculus that the original statement is the definition of “The
function f is continuous at the point x”, so the latter is “f is not continous at x”.

There is an implied quantifier on the y in the statement, that is, it really should say

∀ε > 0∃δ > 0∀y (0 < |x− y| < δ ⇒ |f(x)− f(y)| < ε)

and so the negation would be

∃ε > 0∀δ > 0∃y (0 < |x− y| < δ ∧ |f(x)− f(y)| ≥ ε)

But I didn’t write it that way, and I can’t expect you to see the implicit quantifier
on y. Anyway, this course isn’t MAT 319 or MAT 320, so let’s not worry about it.

(e) Every natural number has a unique additive inverse.

Solution: The negation is clearly

Not every natural number has a unique additive inverse.

or

There is a natural number which does not have a unique additive inverse.

But we can elaborate further. If a number n does not have a unique inverse, either it
doesn’t have an inverse at all, or it has more than one.2 So, we have

There is a natural number which has no additive inverse, or there is a natural
number with more than one additive inverse.

2. Prove or disprove each of the following statements, using only the axioms in Ap-
pendix 1. Define the set of integers Z by

n ∈ Z if (n ∈ N or − n ∈ N or n = 0)

As usual, we say n is negative if n < 0, and n is positive if n > 0.

2I am pretty sure we went over this in class, but in case you forgot, here’s why. ∃!xP (x) is an abbreviation
for ∃x(P (x) ∧ (∃yP (y) ⇒ y = x)). Thus, ∼∃!xP (x) is ∀x(∼P (x) ∨ (∃yP (y) ∧ y 6= x)). That is, either there
is no such x that P (x) holds, or there is more than one.
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(a) For every integer a and every integer b, a + b is positive and a− b is negative.

Solution: This is false. Consider a = 1 and b = 0. Then 1 + 0 = 1, which is
positive, but 1− 0 = 1, which is not negative.

Since we are insisting that everything be proven with reference to axioms, we probably
should work a little harder to fully justify all of our statements. (On an exam, I probably
would give nearly full credit for the above counterexample alone. But this isn’t an
exam, so I should be complete.)

First we know that 1 and 0 exist, as consequences of axioms V.8 and V.9, and the
fact that 1 + 0 = 1 follows immediately from axiom V.8. But, we have not shown
that 1 is positive, nor have we shown that −0 = 0.

One way to see that 1 > 0 is to use axiom VI.1 (1 ∈ N), but perhaps this is a bit of
a cheat, because we didn’t define “positive” in that way.

So let’s prove 1 > 0 by contradiction.
Suppose not. Then either 1 < 0 or 1 = 0. But 1 = 0 contradicts axiom V.12.
If 1 < 0, then −1 > 0 (see the Lemma below). Then applying axiom V.12 (with
x = 1, y = 0, and z = −1), we get 1 · (−1) < 0 · (−1). But this says −1 < 0,
contradicting the earlier statement. Hence, 1 > 0, that is, 1 is a positive number.

To see that −0 = 0, let’s suppose that there is number x which is the additive inverse
of 0. Then 0 + x = 0 by axiom V.10, and 0 + x = x by axiom V.8 (and V.5). Thus,
x = 0, so 0 is its own additive inverse.

Finally, we need the following.

Lemma. For all x ∈ R, x > 0 ⇔ − x < 0.
Proof. Suppose 0 < x. Then by axiom V.16, 0 + (−x) < x + (−x), and applying
axiom V.8 to the right and V.10 to the left, we get −x < 0.
Similarly, if −x < 0, we have (−x) + x < 0 + x, so 0 < x.

Whew! More than I bargained for here.

(b) There are integers a and b so that a + b is positive and a− b is negative.

Solution: True. Since we need merely demonstrate existence of such a and b, let
a = 0 and b = 1. Then 0 + 1 = 1 is positive (we just did this), and 0 − 1 = −1 is
negative (again, see the previous part.)

(c) For every integer a, there is an integer b so that a + b is positive and a − b is
negative.

Solution: This is true. We must show that given a specific integer a, we can find
an integer b that meets our needs. Let’s break the problem up into three possibilities:
a > 0, a < 0, and a = 0.

Case I: a > 0. Let b = 1 + a. First, notice that a < 1 + a, since 0 < 1 and so by
axiom V.16, 0 + a < 1 + a. By transitivity of < (axiom V.14), we have 0 < 1 + a.
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Thus, again by V.16, a + 0 < a + (1 + a). Thus (by transitivity again) 0 < a + 1 + a,
so a + b is positive.

We also need show that a− b is negative. Note that a− b = a− (1 + a) = a− a− 1
(distributive law, commutivity), and so a − b = 0 − 1 = −1. (using associativity,
additive identity). But −1 is negative, from before.

Case II: a < 0. Now let b = 1 − a. Then a + b = a + 1 − a = 1, and 1 is positive.
To see that a − b < 0, we have a − b = a − (1 − a) = a + a − 1. Using the fact
that −1 < 0 and a < 0, together with transitivity and axioms V.14 and V.16, we get
a + a− 1 < 0.

Case III: a = 0. Easiest of all. Let b = 1, so a + b = 0 + 1 = 1, which is positive,
and a− b = 0− 1 = −1, negative.

(d) There is an integer a so that, for every integer b, a + b is positive and a − b is
negative.

Solution: This is false. This says that we can find this a, and write it down
somewhere. Now for this a and any possible b, a + b must be positive and a − b
negative. What about the choice b = −a? It is supposed to be positive, but a + b =
a + (−a) = 0, which isn’t positive.

Another way to see this is to write it in symbols. This statement is

∃a∀b (a + b > 0) ∧ (a− b < 0)

and its negation is
∀a∃b (a + b ≤ 0) ∨ (a− b ≥ 0)

But this follows from the previous part. Since the negation is true, the statement
can’t be.

3. Consider the following symbolic description of “kinship”. Our domain is a set of people,
and we have the predicates

• m(x) means “x is male”.

• f(x) means “x is female”.

• P(x,y) means “x is the parent of y”.

We have two axioms:

(K1) ∀x
(
(m(x) ∨ f(x))∧ ∼ (m(x) ∧ f(x))

)
(K2) ∀x ∃!y ∃!z

(
P (y, x) ∧ P (z, x) ∧m(y) ∧ f(z)

)
(a) State carefully, in common English, the meaning of axiom K1.

Solution: Axiom K1 says

For every person, either the person is male or female, but that person cannot
be both male and female.
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This is better said as

Every person is either male or female, but not both.

(b) State carefully, in common English, the meaning of axiom K2.

Solution:

For every person x, there is a unique person y and a unique person z so that
y and z are parents of x, y is male, and z is female.

This is a very stilted way to say

Everybody has exactly one father and exactly one mother.

provided that we know that “father” means “male parent” and “mother” means
“female parent”.

(c) Define the predicate G(x, y) to mean ∃z (P (y, z) ∧ P (z, x) ∧m(y)). What is the
common English meaning of G(x, y)?

Solution: G(x, y) means

y is a grandfather of x

since z is a parent of x and y is z’s father.

(d) What is the meaning, in common English, of the assertion ∀x ∃y G(x, y)?

Solution:

Everybody has a grandfather.

(e) Prove that ∀x ∃y G(x, y).

Solution: Let x be an arbitrary person. Then by axiom K2, x has a father, that
is, there is some z for which P (z, x) and m(z). Now apply axiom K2 again to this
new z to get z’s father, who we shall denote y. Since x’s father’s father is his/her
grandfather, we have G(x, y). (Of course, there is also the maternal grandfater).
We have shown that for this x, ∃y G(x, y). Since x was arbitrary, we apply UG to
conclude that ∀x ∃y G(x, y).

4. Prove that that for any natural number n, 4n−1 is divisible by 3. (Hint: use induction
on n.)

Solution: We want to establish that ∀n ∈ N P (n), where P (n) is the statement “4n−1
is divisible by 3. Using induction as suggested, we first check P (1):
Is 41 − 1 divisible by 3? Since 41 − 1 = 3, yes it is.

Now we show that P (n) ⇒ P (n + 1), that is, we want to show 4n+1 − 1 is divisible by 3
if we know that 4n − 1 is.

If 4n − 1 is divisible by 3, then there is an m so that 4n − 1 = 3m. Consequently,
4n = 3m + 1. So, we have

4n+1 − 1 = 4 · 4n − 1 = 4 · (3m + 1)− 1 = 4 · 3m + 4− 1 = 3 · 4m + 3 = 3(4m + 1).

We have shown that 4n+1 − 1 can be expressed as 3 times an integer (4m + 1), so it is
divisible by 3.
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