
MATH 141 Solutions to Midterm 1
1. (a)8 pts. Give a complete and careful definition of the statement

“the sequence {ak}∞k=0 is bounded.”

Solution: If {ak} is bounded, there is a real number M so that |ak| < M for all k.

(b)8 pts. Give a complete and careful definition of the following statement:
“The sequence of real numbers {an}∞n=1 converges to the limit L.”

Solution: The sequence {an}∞n=1 converges to the limit L if, for every ε > 0, there is an integer K
so that |an − L| < ε for every n > K.

(c)8 pts. State the Completeness Axiom for R.

Solution: Every bounded monotone sequence is convergent.

(d)8 pts. Give a complete and careful definition of the statement
“the number L is an accumulation point of the sequence {xn}∞n=0.”

Solution: If L is an accumulation point of {xn}∞n=0, then there is a subsequence {yk}∞k=0 of {xn}∞n=0

for which yk converges to L.

2.20 pts. Show that the function g(x) =

{
x2 for x > 0

−x for x ≤ 0
is continuous for all real numbers x.

Solution: Since g(x) = x2 for x ∈ (0,∞) and x2 is continuous, g(x) is continuous for x > 0.
Similarly, since g(x) = −x on (−∞, 0), we have g(x) continuous for x < 0.

Now we need to worry about g(x) near x = 0. We must show that for any sequence {xi} which
converges to 0, we have g(xi) → g(0) = 0. Since xi → 0, we may restrict our attention to values of
xi near zero, specifically |xi| < 1. For such xi, we have |xi|2 < |xi|. In particular, if 0 < xi < 1, we
have g(xi) = x2i < xi, and for xi < 0, g(xi) = −xi = |xi|. This means that for any xi near 0, we have

|g(xi)| ≤ |xi|.

Now, let ε > 0. Since xi → 0, we know there is a K so that |xi| < ε for all i > K. Thus, we have

|g(xi)− g(0)| = |g(xi)− 0| = |g(xi)| ≤ |xi| < ε

for all i > K, and so g(xi)→ 0.

Since g(xi) converges to g(0) whenever xi converges to 0, the function g is continuous at 0. Com-
bining this with the first paragraph gives us continuity of g for all real numbers.
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3. Consider the sequence {an}∞n=1 defined recursively by a1 = 1, an+1 =
1

2

(
an +

2

an

)
.

(a)15 pts. Use induction to show that for all n, we have 1 ≤ an ≤ 2

Solution: For the base case, we have that a1 = 1, and certainly 1 ≤ 1 ≤ 2 holds.
For the inductive step, we must show that whenever 1 ≤ an ≤ 2, we also have 1 ≤ an+1 ≤ 2.
But

an+1 =
1

2

(
an +

2

an

)
≥ 1

2

(
1 +

2

2

)
= 1,

(using the fact that 1 ≤ an ≤ 2).
Furthermore,

1

2

(
an +

2

an

)
≤ 1

2

(
2 +

2

1

)
= 2,

which gives us 1 ≤ an+1 ≤ 2, as desired.
Since we have established that the property holds for a1 and whenever it holds for an, it must also
hold for an+1, induction tells us it must be true for all n ≥ 1.

(b)15 pts. Show that for n > 2, the sequence {an} is decreasing. (Hint: look at an+1/an.)

Solution: If an+1/an < 1, then we know the sequence is decreasing. Observe that

an+1

an
=

1
2
(an + 2/an)

an
=

1

2
+

1

a2n
,

which will be less than 1 whenever an >
√
2.

However, we still must establish that if an >
√
2, we know that an+1 >

√
2 (that is, once it is larger

than
√
2, it stays bigger). To see this, write an =

√
2 + x where x > 0. Then we have

an+1 =
1

2

(√
2 + x+

2√
2 + x

)
=

1

2

(
√
2 + x+

2(
√
2− x)

2− x2

)

>
1

2

(
√
2 + x+

2(
√
2− x)
2

)
=

1

2

(√
2 +
√
2
)
=
√
2.

and so whenever an >
√
2, we know an+1 >

√
2.

Since a2 = 3/2 >
√
2, we know an >

√
2 for all n ≥ 2, and so an > an+1 for n ≥ 2.

(c)5 pts. Does the sequence converge? Justify your answer.

Solution: Since the sequence is bounded (by part a), and it is decreasing after the second term (by
part b), it must converge by the completeness axiom.
In fact, it converges to

√
2, but I didn’t ask you to do that.
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4. For each of series below, determine if it converges. If it converges, give the limit and a brief
justification. If it fails to converge, write that it diverges and give a justification.

(a)10 pts.
∞∑
j=1

πj+2

5j

Solution: This converges; it is a geometric series with ratio π/5 and a first term of π3/5. This means
we can reindex the sum (letting k = j − 1) as

∞∑
j=1

πj+2

5j
=

∞∑
k=0

πk+3

5k+1
=
π3

5

∞∑
k=0

(π
5

)k
=

π3/5

1− π/5
=

π3

5− π
,

(using the formula for the sum of a geometric series).
If you didn’t like that way, you can also get the same answer as follows:

∞∑
j=1

πj+2

5j
= π2

∞∑
j=1

(π
5

)j
= π2

(
−1 +

∞∑
j=0

(π
5

)j)
= −π2 +

π2

1− π/5

=
−(1− π/5)π2 + π2

1− π/5
=

π3/5

1− π/5
=

π3

5− π
.

(b)10 pts.
∞∑
k=0

−k3

k4 − π4

Solution: This diverges.

First, write
∞∑
k=0

−k3

k4 − π4
= −

∞∑
k=0

k3

k4 − π4
.

Then observe that for k ≥ 3 we have
k3

k4 − π4
>
k3

k4
=

1

k
.

Since the harmonic series
∑

1
k

diverges to +∞, we can apply the comparison test to see that
∞∑
k=3

k3

k4 − π4
diverges, and consequently so does the original sum.
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