
MATH 141 Solutions to Midterm 1
1. (a)5 pts. Give a complete and careful definition of the following statement:

“The sequence of real numbers {an}∞n=1 converges to the limit L.”

Solution: The sequence {an}∞n=1 converges to the limit L if, for every ε > 0, there is an integer K
so that |an − L| < ε for every n > K.

(b)5 pts. Let f : A→ R, where A ⊆ R. Give a complete definition of the following statement:
“The function f(x) is continuous at x = a.”

Solution: f(x) is continuous at x = a if f(a) is defined, and for every sequence xn which converges
to a, the sequence f(xn) converges to f(a).
We could also just say f(x) is continuous at x = a if f(a) is defined, and limx→a f(x) = a, which is
exactly the same thing. The first version just avoids the limit.
If you prefer, you could also use the ε-δ definition: f(x) is continuous at x = a if f(a) is defined,
and for every ε > 0, there is δ so that |x− a| < δ ⇒ |f(x)− f(a)| < ε.

(c)5 pts. If A is a subset of the real numbers, give a complete and careful definition of the following
statement: supA = α.

Solution: The supremum of a set of reals A is α if the following holds:

• α is an upper bound for A. That is, for every element x ∈ A, we have x ≤ α.

• If β is also an upper bound for A, we must have α ≤ β.

(d)5 pts. State the Intermediate Value Theorem for a function f : R→ R.

Solution: If f : R → R is continuous on an interval [a, b] and y is any number between f(a) and
f(b), then there is a number c between a and b so that f(c) = y.
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(a)5 pts. If this sequence has any accumulation points, list one of them. If there are none, write
“none”. In either case, give some justification of your answer (it needn’t be a proof, just a
reason why your answer is reasonable.)

Solution: There are, of course, many correct answers (see below for why). However, 0 is as good
an answer as any other. This is because there is a subsequence converging to 0, for example
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(b)10 pts. Describe all accumulation points of the sequence above. As before, if there are none, just
write “none”. Give a justification of your answer.

Solution: Note that every rational number p
q

with 0 < p < q appears in the sequence (that is, all
rationals between 0 and 1). Any real number x with 0 ≤ x ≤ 1 is an accumulation point of this
sequence.
One way to see this is as follows. Write the decimal expansion of x as x = 0.a1a2a3a4 . . . If x is
not a terminating decimal (that is, for any N , there is a k > N so that ak 6= 0), we may select a
subsequence with the nth term given by

xn =
a1a2a3 . . . an

10n

The sequence {xn}will converge to x.
If x has a terminating decimal expansion (that is, it ends in all zeros), there is another representation
which ends in repeating 9s. Using this representation will solve the problem. Well, except for x = 0.
In this case, we can use the sequence given in the first part of the problem.
Finally, observe that {rn} can have no accumulation points outside of [0, 1], since no sequence of
numbers between 0 and 1 can converge to a number larger than 1 or less than 0.

3.15 pts. Prove that for any integer n ≥ 1, 13 + 23 + 33 + 43 + . . .+ n3 = (1 + 2 + 3 + 4 + . . .+ n)2.

The formulae
n∑

i=1

i =
n(n+ 1)

2
and

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6
might or might not be helpful. Induction

could be your friend, too.

Solution: To prove this by induction, we first observe that the statement holds trivially for n = 1,
since 13 = 12.

For the inductive step, we must show that if

13 + 23 + 33 + 43 + . . .+ (n− 1)3 = (1 + 2 + 3 + 4 + . . .+ (n− 1))2

then we have
13 + 23 + 33 + 43 + . . .+ n3 = (1 + 2 + 3 + 4 + . . .+ n)2.

Applying the inductive hypothesis and the given formula yields

13 + 23 + . . .+ (n− 1)3 + n3 =
(
1 + 2 + . . .+ (n− 1)

)2
+ n3

=

(
(n− 1)n

2

)2

+ n3

=
n4 − 2n3 + n2

4
+

4n3

4

=
n4 + 2n3 + n2

4
=
n2(n+ 1)2

4

continued on next page. . .
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Solution (continued): So we have shown that

13 + 23 + . . .+ (n− 1)3 + n3 =
n2(n+ 1)2

4
=

(
n(n+ 1)

2

)2

=
(
1 + 2 + . . .+ (n− 1) + n

)2
Since we have established that the formula holds for n = 1 and that if the formula holds for n− 1,
it must also hold for n, then by the principle of induction we know it must hold for all natural
numbers.

4. (a)15 pts. Let f and g be functions defined on all of R, with f strictly increasing and g strictly decreas-
ing. Prove that there is at most one point a ∈ R with f(a) = g(a). Do not assume f or g are
continuous.
(Hint: what goes wrong if there are two distinct points where f and g are equal?)

Solution: As the hint suggests, we prove this by contradiction. Suppose that we have f(a) = g(a)
and f(b) = g(b) with a < b. Since f is strictly increasing, we have f(a) < f(b), and since g is
decreasing, g(a) > g(b). But this means

g(a) = f(a) < f(b) = g(b) < g(a),

and so g(a) < g(a), a contradiction. Thus, there is at most one point where f and g are equal.

(b)5 pts. Give an example of a pair of continuous functions f and g, defined on all of R, with f

strictly increasing and g strictly decreasing and so that f and g are never equal.

Solution: There are many such functions. One such choice is f(x) = ex and g(x) = −ex.

5. For each of the sequences or series below, determine if it converges. If it converges, give the
limit and a brief justification. If it fails to converge, write that it diverges and give a justification.

(a)5 pts.
∞∑
j=1

π

(ln 8)j

Solution: This converges; it is a geometric series with ratio 1/ ln 8. Since
∑∞

n=0 ar
n = a

1−r , the sum

of this series is
π

1− 1/ ln 8
− 1. (We had to subtract 1 because the term for j = 0 does not appear.)

(b)5 pts.
∞∑
j=1

π

j − ln 8

Solution: This diverges. Since for j ≥ 3 we have
π

j − ln 8
>

1

j
and the harmonic series

∑ 1

j
diverges, the given series also diverges.
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(c)5 pts.
{
(−1)2n + n− 1

n

}∞
n=1

Solution: If an represents the nth term, we can simplify this to

an = 1 +
n− 1

n
,

which obviously converges to 1+1 = 2.

(d)5 pts. {an}∞n=1 where a1 = 1 and ak+1 = 1 +
1

1 + ak

Solution: Maybe it will help to just list a few terms first. The first several terms are

1,
3

2
= 1.5,

7

5
= 1.4,

17

12
≈ 1.41667,

41

29
≈ 1.41379,

99

70
≈ 1.41429, . . .

So it looks like it should converge.
If ak converges to some L, then we must have

L = 1 +
1

1 + L
or equivalently L2 − 1 = 1

This means that L, if it exists, must be either
√
2 or −

√
2. Since all terms of the sequence are

positive, L =
√
2 is the only possibility.

However, we need to check that the sequence actually converges. To see this, one way is to
show that the the odd-numbered terms are monotonically increasing and bounded above, and
that the even numbered terms are monotonically decreasing and bounded below, and so both sub-
sequences converge. Then we’ll show that they converge to the same thing.
Observe that

an+2 = 1 +
1

1 + an+1

= 1 +
1

1 + 1
1+an

=
4 + 3an
3 + 2an

.

This doesn’t seem to help, but it does: from this we can see that an+2 > an precisely when an <
√
2.

Furthermore, from the formula if an <
√
2 then an+2 <

√
2 and if an >

√
2, then an+2 >

√
2.

Putting those two facts together shows that the subsequence of even terms is bounded and de-
creasing, and the subsequence of odd terms is bounded and increasing. Thus, both converge to
some limit.
Finally, we use the same trick as before: the limit L of either subsequence must satisfy

L =
4 + 3L

3 + 2L
, or equivalently, L2 = 2.

Hence, the limit for both subsequences is
√
2. Consequently, the entire sequence converges to

√
2.

(Naturally, I didn’t expect anyone to do this in anywhere near this much detail. But I have to.)
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