MAT 141 Honors Calculus

- 1. (3 points each)
 - (a) Let a be a point in the domain of a function f that is not an isolated point. Define precisely what it means for f to be continuous at a.

f is continuous at a if, for every sequence $\{x_n\}$ in the domain of f such that $x_n \to a$, it is also true that $f(x_n) \to f(a)$.

(b) Let S be a subset of \mathbb{R} . Define sup S and inf S.

 $\sup S$ is the least upper bound for S; that is, it is an upper bound for S ($\sup S \ge x$ for all $x \in S$), and if B is any upper bound for S, then $\sup S \le B$

inf S is the greatest lower bound for S; that is, it is a lower bound for S (inf $S \leq x$ for all $x \in S$), and if b is any lower bound for S, then inf $S \geq b$

(c) State the Intermediate Value Theorem.

If f is continuous on [a, b] and C is any value between f(a) and f(b), then there exists $t \in [a, b]$ such that f(t) = C.

(d) State the Extreme Value Theorem.

If f is continuous on [a, b], then it is bounded on this interval, and it attains its minimum and maximum values; that is, there exist t_{\min} and t_{\max} such that $\inf f = f(t_{\min})$ and $\sup f = f(t_{\max})$.

(e) State the Squeeze Theorem for functions.

Suppose f, g, h have the same domain and a is an accumulation point of their common domains, and suppose further that $f(x) \leq h(x) \leq g(x)$ for all x in their domain. If

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = L,$$

then $\lim_{x\to a} h(x) = L$.

(f) Give the definition of the derivative f'(a) of a function f at a point a in its domain.

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h}.$$

Either definition is acceptable.

2. Find the value of each of the following limits, if it exists; otherwise, write **D.N.E.** (does not exist). (3 points each)

(a)
$$\lim_{x \to -1} \frac{x+1}{x^2-1}$$
$$= \lim_{x \to -1} \frac{x+1}{(x+1)(x-1)}$$
$$= \lim_{x \to -1} \frac{1}{x-1}$$
because $x \neq -1$ when computing the limit
$$= \frac{1}{-2} = \left[-\frac{1}{2} \right]$$
(b)
$$\lim_{x \to 0} \frac{x}{\sin x}$$
$$= \lim_{x \to 0} \frac{1}{(\sin x)/x}$$
$$= \frac{1}{1}$$
because $\frac{\sin x}{x} \to 1$ as $x \to 0$
$$= \boxed{1}$$
(c)
$$\lim_{x \to 0} \frac{x}{\cos x}$$
$$= \frac{\lim_{x \to 0} x}{\lim_{x \to 0} \cos x} = \frac{0}{1} = \boxed{0}$$
(d)
$$\lim_{x \to \infty} \tan \frac{1}{x}$$
$$= \lim_{y \to 0} \tan y$$
$$= \frac{\lim_{y \to 0} \sin y}{\lim_{y \to 0} \cos y} = \boxed{0}$$
(e)
$$\lim_{x \to \infty} \tan^{-1} x$$
$$= \left[\frac{\pi}{2} \right]$$
by definition of the inverse tangent function

(Partial credit will be given to answers based on the assumption that $\tan^{-1} x = 1/\tan x$, despite several mentions in class that the convention $\tan^n x = (\tan x)^n$ only applies to positive values of n.)

(f) $\lim_{x \to 1} \ln |x - 1|$ = $\lim_{y \to 0} \ln |y|$ D.N.E. because the function diverges to $-\infty$

- 3. Compute the following derivatives. (3 points each)
 - (a) f'(3), where $f(x) = 3x^3 2x^2 + x 1$ $\begin{aligned} f'(3) &= \frac{d}{dx}(3x^3 - 2x^2 + x - 1) \Big|_{x=3} \\ &= (9x^2 - 4x + 1) \Big|_{x=3} \\ &= 81 - 12 + 1 = \boxed{70} \end{aligned}$

(b) g'(2), where $g(x) = \tan^{-1} x$

$$g'(2) = \frac{d}{dx} \tan^{-1} x \Big|_{x=2}$$
$$= \frac{1}{1+x^2} \Big|_{x=2}$$
$$= \frac{1}{1+2^2} = \boxed{\frac{1}{5}}$$

(c)
$$\frac{d}{dx} ((x + \cos x)e^x)$$

= $(x + \cos x)e^x + (1 - \sin x)e^x = \boxed{(\cos x - \sin x + x + 1)e^x}$

(d) $\frac{d}{dx}\ln(1+x^2)$

$$\boxed{\frac{2x}{1+x^2}}$$

(e)
$$\frac{d}{dx} \left(\frac{\sin(x^3)}{1 + e^x} \right)$$

 $\frac{(1 + e^x)(\cos x^3)(3x^2) - (\sin x^3)e^x}{(1 + e^x)^2}$

(f)
$$\frac{d}{dx}\sin((x+1)^2(x+2))$$

 $\cos((x+1)^2(x+2))\frac{d}{dx}(x+1)^2(x+2)$
 $= \cos((x+1)^2(x+2))(2(x+1)(x+2)+(x+1)^2)$

4. (a) Recall that the hyperbolic sine and cosine functions are defined by

$$\sinh x = \frac{e^x - e^{-x}}{2}$$
 and $\cosh x = \frac{e^x + e^{-x}}{2}$.

Show that $\frac{d}{dx} \sinh x = \cosh x$ and $\frac{d}{dx} \cosh x = \sinh x$. (*Note:* unlike the case of the trigonometric functions, the signs of these do *not* change when taking derivatives.) (6 points)

Using the Chain Rule and the Linearity Properties of derivatives, we find

$$\frac{d}{dx}\sinh x = \frac{d}{dx}\frac{e^x - e^{-x}}{2} = \frac{e^x + e^{-x}}{2} = \cosh x$$

and

$$\frac{d}{dx}\cosh x = \frac{d}{dx}\frac{e^x + e^{-x}}{2} = \frac{e^x - e^{-x}}{2} = \sinh x$$

which is what we wanted to show.

(b) Use part (a) and the relation $\cosh^2 x - \sinh^2 x = 1$ to find the derivative of $\sinh^{-1} x$, the inverse hyperbolic sine. (Use the Inverse Function Rule.) (8 points)

Set $y = \sinh^{-1} x$, so that $x = \sinh y$. By the Inverse Function Rule,

$$\frac{d}{dx}\sinh^{-1}x = \frac{1}{\frac{d}{dy}\sinh y}$$
$$= \frac{1}{\cosh y}$$
$$= \frac{1}{\sqrt{1+\sinh^2 y}}$$
$$= \frac{1}{\sqrt{1+\sinh^2 y}}.$$

(*Note:* $\sinh x$ is strictly increasing on all of \mathbb{R} , and it takes all real values, thus its inverse is also defined on all of \mathbb{R} . The formula above shows that its inverse is differentiable on all of \mathbb{R} and that the derivative is continuous.)

The graphs of $y = \sinh x$ and $y = \sinh^{-1} x$.

5. Let $p(x) = ax^3 + bx^2 + cx + d$ be a cubic polynomial with a > 0 and d < 0.

(a) Show that $\lim_{x\to\infty} \frac{p(x)}{x^3} = a$. (6 points)

$$\lim_{x \to \infty} \frac{p(x)}{x^3} = \lim_{x \to \infty} \frac{ax^3 + bx^2 + cx + d}{x^3}$$
$$= \lim_{x \to \infty} \left(a + \frac{b}{x} + \frac{c}{x^2} + \frac{d}{x^3} \right)$$
$$= a + 0 + 0 + 0 = a$$

(b) Use part (a) to show that p(x) > 0 for some x > 0. (6 points)

Because $\lim_{x\to\infty} \frac{p(x)}{x^3} = a$ and a > 0, for some x > 0 we must have $\frac{p(x)}{x^3} > \frac{a}{2}$. This implies $p(x) > ax^3/2$. Now the inequalities a > 0 and x > 0 imply that p(x) > 0.

(c) Use part (b) and the Intermediate Value Theorem to show that p(x) equals zero for some x > 0. (6 points)

Let x_0 be the point found in part (b). Because p(x) is continuous on all of \mathbb{R} , it is in particular continuous on $[0, x_0]$. Because d < 0, we have p(0) = d < 0; by our choice of x_0 we also have $p(x_0) > d$. Therefore $p(0) < 0 < p(x_0)$, and by the Intermediate Value Theorem, there exists $x \in [0, x_0]$ such that p(x) = 0. 6. (a) Let f and g be functions defined on all of R. Suppose that f is strictly increasing and g is strictly decreasing. Show that there is at most one point of R where f and g are equal. Do not assume that either function is differentiable. (*Hint:* What happens if you assume that f and g are equal at two distinct points of R?) (8 points)

Suppose, by way of contradiction, that f and g were equal at two distinct points, say x and y with x < y. Because f is strictly increasing, f(x) < f(y), and because g is strictly decreasing, g(x) > g(y). But f(x) and g(x) are equal, so we have

$$g(y) < g(x) = f(x) < f(y).$$

Now we see that g(y) and f(y) cannot be equal, because no number can be strictly greater than itself. This is a contradiction to our choice of y, and so f and g cannot be equal at two distinct points, which is the same thing as saying there is at most one point where they are equal.

(b) Give an example of a pair of continuous functions f and g defined on all of ℝ such that f is strictly increasing, g is strictly decreasing, and f and g are never equal. (6 points)

An obvious example is $f(x) = e^x$, $g(x) = -e^x$. Other examples are possible.