
MAT 141 Honors Calculus
Exam 1

SOLUTIONS

1. (3 points each)

(a) Suppose that A and B are sets. Give the definitions of A ∪B and A ∩B.

A ∪B = {x | x ∈ A or x ∈ B}; this is the union of A and B
A ∩B = {x | x ∈ A and x ∈ B}; this is the intersection of A and B

(b) What does it mean for an interval to be bounded?

It means there exist a, b ∈ R such that a ≤ x ≤ b for all x in the interval.

(c) What does it mean for a sequence to be bounded?

If the sequence is written {an}∞n=0, it means there exists some M ∈ R
such that |an| ≤M for all n.

(d) Give the precise meaning of the phrase, “the sequence {an}∞n=0 converges to L.”

Given any ε > 0, there exists N ∈ N such that |an − L| < ε whenever
n ≥ N .

(e) State the Completeness Axiom.

Every bounded, monotone sequence converges.

(f) State the Bolzano–Weierstrass Theorem.

Every bounded sequence has a convergent subsequence.

(g) State the Comparison Test for positive series.

If
∑∞

k=0 ak and
∑∞

k=0 bk are series such that 0 ≤ ak ≤ bk for all k and∑∞
k=0 bk converges, then

∑∞
k=0 ak also converges.

(h) State the Alternating Series Test.

If {ak} is a strictly decreasing sequence of positive numbers such that
ak → 0 as k →∞, then the series

∑∞
k=0(−1)kak converges.
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2. For each of the following sequences and series, find its limit or state that it diverges.
(3 points each)

(a) (−1)n +
1

n

This sequence diverges; it has two distinct accumulation points, 1 and
−1.

(b)
3n3 − 1

2− n2 + n3

This sequence converges to 3 ; it is a rational function of n with equal
degree in the numerator and denominator.

(c)
cos k

k!

This sequence converges to 0 , by the Squeeze Theorem, for example.

(d) 1− π2

2
+
π4

24
− π6

720
+ · · ·+ (−1)k π2k

(2k)!
+ · · ·

This series converges to cos π = −1 ; here we simply recognize the form
of the series expression for the cosine.

(e)
∞∑

k=0

(
−1

2

)(
−1

4

)k

This is a geometric series with ratio −1/4, whose absolute value is less
than 1. It converges to

−1/2

1− (−1/4)
= −2

5

(f)
∞∑

k=1

3

2k

This series diverges by comparison with the harmonic series:
3
2k
> 1

k
for all k.
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3. Use induction to prove that

3 + 11 + · · ·+ (8n− 5) = 4n2 − n

for all integers n ≥ 1. (15 points)

First, we establish that the equality is true for n = 1. On the left we have
simply 3, and on the right we have 4(1)2 − 1 = 3. Thus the equality holds
for n = 1.

Now assume that the equality holds for some fixed n. We want to show that
it is true when n is replaced by n+ 1. By adding 8(n+ 1)− 5 to both sides
of the equality given by n, we obtain

3 + 11 + · · ·+ (8n− 5) + (8(n+ 1)− 5) = 4n2 − n+ (8(n+ 1)− 5).

The right side becomes 4n2 − n + 8n + 8− 5 = 4n2 + 7n + 3. On the other
hand, if we substitute n + 1 directly into the expression 4n2 − n, we get
4(n + 1)2 − (n + 1) = 4(n2 + 2n + 1) − (n + 1) = 4n2 + 7n + 3. Thus the
equality is also true for n+ 1.

Because the equality is true for n = 1 and true for n+ 1 whenever it is true
for n, it is true for all n ≥ 1.

4. Find all accumulation points of the sequence zn = in. (10 points)

The sequence zn is periodic:

1, i,−1,−i, 1, i,−1,−i, . . . ,

with z4n+k = zk for all n, k ∈ N. Thus the four values {1,−1, i,−i} all
appear infinitely often, and because they are the only values that appear,
they are the accumulation points of the sequence.
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5. Suppose that {an}∞n=0 and {bn}∞n=0 are convergent sequences and that bn−an converges
to 0. Show that an and bn have the same limit. (18 points)

Set A = limn→∞ an and B = limn→∞ bn. We want to show A = B. We will
give three proofs of this result, all related.

(1) This is the most direct proof, in the sense that it only requires using the
definitions, but also the longest.

The equality A = B means the same as |B − A| < ε for all ε > 0.

So take ε to be any positive number. By the definition of a limit, we know
we can choose:

• NA such that |an − A| < ε/3 whenever n ≥ NA;

• NB such that |bn −B| < ε/3 whenever n ≥ NB;

• N0 such that |bn − an| < ε/3 whenever n ≥ N0.

After finding these, set N = max{NA, NB, N0}. Then for any n ≥ N , we
have

|B − A| = |B + (−bn + bn) + (−an + an)− A|
= |(B − bn) + (bn − an) + (an − A)|
≤ |B − bn|+ |bn − an|+ |an − A|

<
ε

3
+
ε

3
+
ε

3
= ε,

and thus we have shown that |B − A| < ε. Because ε was arbitrary, we
conclude that A = B.

(2) This is a variant of the above proof, but it proceeds by contradiction.

Suppose, for the sake of contradiction, that A 6= B. Then |B−A| > 0, and so

ε0 = |B−A|
3

is also > 0. Therefore there exist NA, NB such that |an−A| < ε0

whenever n ≥ NA and |bn−B| < ε0 whenever n ≥ NB. But this means that,
for all n ≥ max{NA, NB}, |bn − an| > ε0. Formally,

|bn − an| = |bn −B +B − A+ A− an|
≥ |B − A| − (|bn −B|+ |an − A|)

> |B − A| − 2
|B − A|

3
= ε0.

This contradicts the assumption that bn− an → 0. Therefore our claim that
A 6= B must be false; i.e., we conclude that A = B.

(3) This is the “easiest” proof, in the sense that all of the work is hidden in
the proof of a theorem we use.

By the theorem on the arithmetic of sequences, we have

B = lim
n→∞

bn = lim
n→∞

(bn − an + an) = lim
n→∞

(bn − an) + lim
n→∞

an = 0 + A = A.
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6. (a) Using the series definition of ex, show that ea > 1 whenever a > 0. (8 points)

Recall that the series definition of ex is

ex =
∞∑

k=0

xk

k!
= 1 + x+

x2

2!
+
x3

3!
+ · · · .

If a > 0, then all terms of the series for ea are strictly positive, and the
first term is 1. Therefore the sum of the series is strictly greater than 1.

(b) Show that if b < 0, then 0 < eb < 1. (Hint: Think of b as −a for some positive a
and use the key property of exponentials.) (7 points)

Following the hint, we set a = −b, so that a > 0. Then by the key
property of the exponential, we have

ebea = eb+a = eb−b = e0 = 1,

which means eb = 1/ea. Because ea > 1, eb is positive and less than 1.

comic by Randall Munroe
http://xkcd.com/179/
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