MAT 132 Solutions to Midterm 1 (acoustic)

1. \[\int \frac{2x - 3}{x^3 - x} \, dx \]

Solution: We do this by partial fractions. Since \(x^3 - x = x(x - 1)(x + 1) \), we want to find numbers \(A, B, \) and \(C \) so that

\[
\frac{2x - 3}{x(x + 1)(x - 1)} = \frac{A}{x} + \frac{B}{x - 1} + \frac{C}{x + 1}.
\]

Cross-multiplying, we have \(A(x - 1)(x + 1) + Bx(x + 1) + Cx(x - 1) = 2x - 3 \).

If \(x = 0 \), we have \(-A = -3\) so \(A = 3 \).

If \(x = 1 \), we have \(2B = -1 \) so \(B = -1/2 \).

If \(x = -1 \), we have \(2C = -5 \) so \(C = -5/2 \).

This means that

\[
\int \frac{2x - 3}{x^3 - x} \, dx = \int \left(\frac{3}{x} - \frac{1/2}{x - 1} - \frac{5/2}{x + 1} \right) \, dx = 3 \ln |x| - \frac{1}{2} \ln |x - 1| - \frac{5}{2} \ln |x + 1| + C.
\]

2. \[\int_1^6 \frac{dr}{(r - 2)^4} \]

Solution: Since \(\frac{1}{(r - 2)^4} \) becomes undefined when \(r = 2 \), we have write the integral as the sum of two improper integrals. That is,

\[
\int_1^6 \frac{dr}{(r - 2)^4} = \int_1^2 \frac{dr}{(r - 2)^4} + \int_2^6 \frac{dr}{(r - 2)^4}
\]

\[
= \lim_{t \to 2^-} \int_1^t \frac{dr}{(r - 2)^4} + \lim_{t \to 2^+} \int_t^6 \frac{dr}{(r - 2)^4}
\]

\[
= \lim_{t \to 2^-} \left(-\frac{1}{3(r - 2)^3} \right)_1^t + \lim_{t \to 2^+} \left(-\frac{1}{3(r - 2)^3} \right)_t^6
\]

\[
= \lim_{t \to 2^-} \left(-\frac{1}{3(t - 2)^3} - \frac{1}{3} - \frac{1}{48} + \lim_{t \to 2^+} \frac{1}{3(t - 2)^3} \right).
\]

However, both of the limits above are undefined, so the integral diverges.
3. \[\int_{1}^{2} \frac{\sqrt{t^2 - 1}}{t} \, dt \]

Solution: We make the substitution \(t = \sec \theta \), and so \(dt = \sec \theta \tan \theta \, d\theta \). Also, when \(t = 1 \) we have \(\theta = 0 \), and when \(t = 2 \) we have \(\theta = \pi/3 \). Thus, we have

\[
\int_{1}^{2} \frac{\sqrt{t^2 - 1}}{t} \, dt = \int_{0}^{\pi/3} \frac{\sqrt{\sec^2 \theta - 1}}{\sec \theta} \sec \theta \tan \theta \, d\theta = \int_{0}^{\pi/3} \sqrt{\tan^2 \theta} \tan \theta \, d\theta
\]

\[
= \int_{0}^{\pi/3} \tan^2 \theta \, d\theta = \int_{0}^{\pi/3} (\sec^2 \theta - 1) \, d\theta
\]

\[
= \tan \theta - \theta \bigg|_{0}^{\pi/3} = \tan(\pi/3) - \frac{\pi}{3} = \sqrt{3} - \frac{\pi}{3}.
\]

4. \[\int x^5 \cos(x^3) \, dx \]

Solution: First, we make the substitution \(w = x^3 \), so \(dw = 3x^2 \, dx \).

\[
\int x^5 \cos(x^3) \, dx = \frac{1}{3} \int w \cos w \, dw = \frac{1}{3} \left(w \sin w - \int \sin w \, dw \right)
\]

\[
= \frac{1}{3} (w \sin w + \cos w) + C = \frac{x^3 \sin x^3 + \cos x^3}{3} + C
\]

where above we used integration by parts, with \(u = w \) and \(dv = \cos w \, dw \), so \(du = dw \) and \(v = \sin w \).

5. \[\int \sin^3(x) \cos^2(x) \, dx \]

Solution: We use the identity \(\cos^2 x + \sin^2 x = 1 \) to transform all but one of the \(\sin x \) terms into powers of \(\cos x \). So we have

\[
\int \sin^3(x) \cos^2(x) \, dx = \int (1 - \cos^2 x) \cos^2 x \sin x \, dx.
\]

Now we make the substitution \(u = \cos x \) with \(du = -\sin x \, dx \) to get

\[
\int (1 - u^2)u^2 \, du = \int (u^2 - u^4) \, du = \frac{\cos^3 x}{3} - \frac{\cos^5 x}{5} + C.
\]
6. \int_0^1 x e^{4x} \, dx

Solution: We integrate by parts, with \(u = x \) and \(dv = e^{4x} \, dx \), so \(du = dx \) and \(v = \frac{1}{4} e^{4x} \). This gives us

\[
\int_0^1 x e^{4x} \, dx = \frac{x}{4} e^{4x} \bigg|_0^1 - \frac{1}{4} \int_0^1 e^{4x} \, dx = \frac{x}{4} e^{4x} \bigg|_0^1 - \frac{1}{16} e^{4x} \bigg|_0^1 = \frac{e^4}{4} - \frac{e^4}{16} + \frac{1}{16}
\]

7. The values of a function \(f(x) \) are given by the table at right.

<table>
<thead>
<tr>
<th>x</th>
<th>-0.5</th>
<th>0</th>
<th>0.5</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
<th>2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>-1</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>-1</td>
<td>1</td>
</tr>
</tbody>
</table>

(a) Use Simpson’s rule to approximate \(\int_0^2 f(x) \, dx \).

Solution: First, observe that there are two “extra” values in the table, namely \(x = -0.5 \) and \(x = 2.5 \). If we were to include those values (as some people did), the approximation would be for \(\int_{-0.5}^{2.5} f(x) \, dx \).

We have \(\Delta x = 1/2 \), and \(n = 4 \). Simpson’s rule is given by

\[
S_4 = \frac{1/2}{3} (f(0) + 4f(0.5) + 2f(1) + 4f(1.5) + f(2)) = \frac{1}{6} (0 + 12 + 4 + 4 - 1) = \frac{19}{6}.
\]

(b) If you know that \(-5x^2 \leq f^{(4)}(x) \leq 5x^2 \), what is the maximum error in the approximation above?\(^1\)

Solution: This is just a matter of filling in the proper values into the given formula. Since \(|f^{(4)}(x)| \leq 5x^2 \), it takes on its maximum at \(x = 2 \), so we may use \(K_4 = 5 \cdot 2^2 = 20 \). This means the maximum error in the above approximation is

\[
\frac{2^5 \cdot 20}{180(4)^4} = \frac{1}{72}.
\]

8. Does the improper integral \(\int_2^\infty \frac{x^{1/2} + 1}{5x - 8} \, dx \) converge? Fully justify your answer (note that if the integral converges, you need not give its value).

Solution: No, [it diverges]. Note that \(\frac{x^{1/2} + 1}{5x^2 - 8} > \frac{x^{1/2} + 1}{5x^2} > \frac{x^{1/2}}{5x^{1/2}} > \frac{1}{5x^{1/2}} \).

But \(\frac{1}{5} \int_2^\infty \frac{dx}{x^{1/2}} \) diverges, since

\[
\int_2^\infty \frac{dx}{x^{1/2}} = \lim_{M \to \infty} 2 x^{1/2} \bigg|_2^M = \lim_{M \to \infty} 2 \sqrt{M} + 2\sqrt{2}
\]

which diverges to \(+\infty \) as \(M \to \infty \). By the comparison test, the original integral diverges.

\(^1\)Feel free to use the fact that \(E_s < \frac{(b - a)^5}{180n^4} K_4 \), where \(K_4 = \max |f^{(4)}(x)| \) for \(a \leq x \leq b \).
Alternatively, many people did the following instead:

\[
\int_2^\infty \frac{x^{1/2} + 1}{5x - 8} \, dx = \int_2^\infty \frac{x^{1/2}}{5x - 8} \, dx + \int_2^\infty \frac{1}{5x - 8} \, dx \\
= \int_2^\infty \frac{x^{1/2}}{5x - 8} \, dx + \lim_{M \to \infty} \frac{1}{5} \ln |5M - 8| - \frac{\ln(2)}{5}
\]

Since the integral in the last term is positive and the limit diverges to \(+\infty\), the original integral must diverge. This method is, in fact, equivalent to comparison with \(\int_2^\infty \frac{dx}{5x-4}\).

9. Find the area lying between the two curves \(x + y^2 = 0\) and \(x + y = 0\)

Solution: The curves in question are graphed at right. They intersect at \((0,0)\) and at \((-1,1)\): since the second curve is \(y = -x\), substituting this into the first curve gives \(x + x^2 = 0\), which holds when \(x = 0\) or \(x = -1\). We can choose to integrate either with respect to \(x\) or with respect to \(y\).

Integrating with respect to \(x\), we rewrite the curves as

\[y = \pm \sqrt{-x} \quad y = -x.\]

The upper curve is \(y = \sqrt{-x}\) and the lower curve is \(y = -x\), and the relevant \(x\)-values are \(-1 \leq x \leq 0\). The resulting integral is

\[
\int_{-1}^{0} \sqrt{-x} + x \, dx = \left. -\frac{2}{3}(-x)^{3/2} + \frac{x^2}{2} \right|_{-1}^{0} = -\frac{2}{3} + \frac{1}{2} = \frac{1}{6}.
\]

If we choose instead to integrate with respect to \(y\), the rightmost curve is \(x = -y^2\) and the leftmost curve is \(x = -y\), and the relevant \(y\)-values are \(0 \leq y \leq 1\). So the integral is

\[
\int_{0}^{1} -y^2 + y \, dy = \left. -\frac{y^3}{3} + \frac{y^2}{2} \right|_{0}^{1} = -\frac{1}{3} + \frac{1}{2} = \frac{1}{6}.
\]