MAT 132 FINAL EXAM

NAME:

SECTION:

You have $2\frac{1}{2}$ hours to complete this exam. You may NOT use a calculator. You may NOT use any books or notes. Please SHOW YOUR WORK and EXPLAIN YOUR REASONING wherever possible. It might be helpful to use the following trigonometric identities:

$$\sin^{2}(x) + \cos^{2}(x) = 1$$

$$\sin^{2}(x) = \frac{1}{2}(1 - \cos(2x))$$

$$\cos^{2}(x) = \frac{1}{2}(1 + \cos(2x))$$

			1		2		3		4		5		6			8	9
		15 p	$_{\rm ots}$	15 p	ots	15 p	ots	15 p	ots	20 p	ots	15 p	ots	10 p	ots	$15 \mathrm{~pts}$	$15 \mathrm{~pts}$
Sco	re																
	1	10]	11]	12]	13]	14]	15		16		17	Tota
	10	pts	20	pts	20	pts	15	pts	30	pts	25	pts	25	pts	+:	20 EC pts	280 pts
Score																	

2 NAME:

1. (15 points) Evaluate $\int x^5 \cdot \ln(x) dx$. (hint: use integration by parts)

2. (15 points) Evaluate $\int_0^{\pi} \sin(2x) \, \mathrm{dx}$.

3. (15 points) Evaluate $\int x^3 \sqrt{3x^4 + 5} \, \mathrm{dx}$.

4. (15 points) Evaluate the improper integral $\int_0^\infty 3e^{-x} \, \mathrm{dx}$.

NAME:

4

5. (20 points) Find a function y(x) that satisfies the differential equation y' = xy and the initial value y(0) = 5.

6. (15 points) Last year I planted rhubarb in my garden and harvested 40 pounds of it. This year, I didn't plant any at all, but the rhubarb grew back anyway, and I harvested 30 pounds. I figure this pattern will continue; every year's harvest will be 75% of the previous year's harvest. If this pattern continues forever, what is the total yield (in pounds of rhubarb)?

MAT 132 FINAL EXAM

7. (10 points) Write an integral that equals the arclength of the graph of $y(x) = \ln(x)$ between x = 1 and x = 3. You do NOT need to solve this integral.

8. (15 points) Draw a slope-field for the differential equation y' = y - 1. Use it to sketch two solution curves, one with y(0) = 0.5 and one with y(0) = 1.5

NAME:	

6

9. (15 points) Does the series $\sum_{n=2}^{\infty} \frac{\ln(n)}{n} = \frac{\ln(2)}{2} + \frac{\ln(3)}{3} + \frac{\ln(4)}{4} + \cdots$ converge or diverge? Explain why.

10. (10 points) Does $\sum_{n=2}^{\infty} (-1)^n \frac{1}{\ln(n)} = \frac{1}{\ln(2)} - \frac{1}{\ln(3)} + \frac{1}{\ln(4)} - \cdots$ converge or diverge? Explain why.

11. (20 points) Does the series $\sum_{n=1}^{\infty} \frac{n!}{(2n)!} 10^n$ converge of diverge? Explain why. 12. (20 points) Find the radius of convergence and the interval of convergence of the power series $f(x) = \sum_{n=0}^{\infty} \frac{n}{2^n} (x-1)^n$.

13. (15 points) Use the Maclaurin series for sin(x) (which you should have memorized) to find the 10th degree Taylor polynomial for $sin(x^2)$ at a = 0.

- 14. (30 points) Find the Taylor series for the function $f(x) = \frac{1}{x}$ at a = 1. Do this in three different ways:
 - (a) From the general formula (without using any Taylor series which you have memorized)

(b) Using the Taylor series: $ln(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} (x-1)^n$.

(c) Starting with the Maclaurin series for $\frac{1}{1-x}$ (which you should have memorized), and making a substitution.

8

NAME:

- 15. (25 points) Newton's Law of cooling states that the rate of cooling of an object is proportional to the temperature difference between the object and its surroundings. I have just poured a cup of $100^{\circ}F$ coffee in a room where the temperature is $50^{\circ}F$. Let f(t) denote the coffee temperature t hours after I poured it.
 - (a) Write a differential equation and initial condition that f(t) satisfies.

(b) Solve the initial value problem, assuming the coffee temperature is initially dropping at a rate of 40 degrees per hour (that is, f'(0) = -40).

NAME:

16. (25 points)

(a) Sketch a picture of the region above the x-axis, under the graph of $f(x) = \sin(x)$, and between x = 0 and $x = \pi$.

(b) Compute the area of this region.

(c) Compute the volume of the solid obtained by revolving this region about the x-axis.

10

17. (EXTRA CREDIT – 20 points) I lift water from a 40 foot deep well by means of a bucket attached to a rope. When the bucket is full of water, it weighs 30 pounds. But the bucket has a leak that causes it to lose water at a rate of $\frac{1}{4}$ pound for each foot that I raise the bucket. Neglecting the weight of the rope, find the work done (in foot-pounds) in raising the (initially full) bucket from the bottom of the well to the top of the well.