1. A lemur rancher needs to invest in some high-tech lemur grooming machines. She determines that the machines will depreciate at a rate \(f(t) \), and the cost of keeping them in top running condition is given by another function \(g(t) \), where \(t \) is the time that the machines have been running.

The cost of keeping the machines around (instead of replacing them with new ones) is given by

\[
C(t) = \frac{1}{t} \int_0^t (f(t) + g(t)) \, dt
\]

Show the critical points of \(C(t) \) occur when \(C(t) = f(t) + g(t) \).

2. In the problem below, the identities \(\cos(\frac{\pi}{2} - x) = \sin(x) \) and \(\sin^2(x) + \cos^2(x) = 1 \) will be useful.

 (a) Use substitution to show that for any continuous function \(f \),
 \[
 \int_0^{\pi/2} f(\sin x) \, dx = \int_0^{\pi/2} f(\cos x) \, dx.
 \]

 (b) Using part (a) and the other trig identity, calculate
 \[
 \int_0^{\pi/2} \sin^2(x) \, dx \quad \text{and} \quad \int_0^{\pi/2} \cos^2(x) \, dx.
 \]