MAT 127 Solutions to First Midterm

- 1. A culture of bacteria grows at a rate proportional to the number of bacteria present in the culture. At noon on January 24, there were 15 thousand bacteria. At 2 PM, there were 60 thousand present.
 - (a) 12 points Give a formula for B(t), the number of bacteria in the culture t hours after noon on January 24.

Solution: Since the growth rate of the bacteria is proportional to the number present, we have the differential equation

$$B'(t) = kB(t)$$

where t is the time in hours since noon, and B(t) is the number of bacteria in thousands.

This is a separable equation, so we separate variables to obtain

$$\int \frac{dB}{B} = \int k \, dt$$

$$\ln|B| = kt + c$$

exponentiating both sides,

$$|B| = e^{kt+c}$$

so, since we can write $\pm e^c$ as an arbitrary constant A, we have

$$B = Ae^{kt}.$$

(Many students just remembered the formula for exponential growth and skipped directly to this step. That's fine, too.)

From the initial condition, we know $B(0) = 15 = Ae^0 = A$. Since we also have B(2) = 60, we can solve for k:

$$60 = 15e^{2k}$$

$$4 = e^{2k}$$

Taking logs,

$$\ln 4 = 2k$$

so
$$k = \frac{\ln 4}{2}$$
, or $k = \ln 2$.

So

$$B(t) = 15e^{t \ln 2} = 15 \cdot 2^t.$$

(either form is OK. Many people also wrote $15e^{\frac{\ln 4}{2}t}$, which is equivalent.

(b) 8 points When will there be 100 thousand bacteria in the culture?

Solution: To answer this, we need to find the value of t so that B(t) = 100. Since we have $B(t) = 15e^{t \ln 2}$ from the previous part, we solve

$$100 = 15e^{t \ln 2}$$

$$\frac{20}{3} = e^{t \ln 2}$$

Now take the log of both sides,

$$\ln\frac{20}{3} = t\ln 2$$

$$\frac{\ln(20/3)}{\ln 2} = t$$

That is, about 2.7 hours after noon.

2. 20 points Consider the initial value problem given by

$$y' = x - 3y \qquad y(0) = 0$$

Use Euler's method with a stepsize h = 1 to find an approximation to y(3).

To receive full credit, show your intermediate steps *clearly*.

Solution: Our initial point on our numeric solution is $(x_0, y_0) = (0, 0)$. The next approximation is given by $x_1 = x_0 + h$ and $y_1 = y_0 + h \cdot y'(x_0, y_0)$, so we need to find the slope of the solution at (0, 0). Since our stepsize h = 1, things are easier.

$$y'(0,0) = 0 - 3 \cdot 0 = 0$$
 so $(x_1, y_1) = (1, 0 + 0) = (1, 0).$

Now we compute the slope at (1,0) for the next point. We have

$$y'(1,0) = 1 - 3 \cdot 0 = 1$$
 so $(x_2, y_2) = (2, 0 + 1) = (2, 1)$.

Continuing in this way,

$$y'(2,1) = 2 - 3 \cdot 1 = -1$$
 so $(x_3, y_3) = (3, 1 - 1) = (3, 0)$.

Our final approximation is then y(3) = 0.

3. Consider the second order linear differential equation

$$y'' - 9y = 0$$

(a) 10 points Write a formula for the general solution y(t).

Solution: We look for solutions of the form $y = e^{kt}$, so we plug this in to get

$$k^2 e^{kt} - 4e^{kt} = 0.$$

This factors as

$$e^{kt}(k-2)(k+2) = 0,$$

which only has solutions when k = 2 or k = -2. This means the general solution to this differential equation is

$$y = Ae^{2t} + Be^{-2t},$$

where A and B are arbitrary constants.

(b) 10 points Let y(t) be the specific solution with y(0) = 1 and y'(0) = 0. Write a formula for y(t).

Solution: We need to determine A and B subject to the given initial conditions. From y(0) = 1, we have

$$1 = Ae^0 + Be^0 = A + B$$
 so $B = 1 - A$.

That is, $y(t) = Ae^{2t} + (1 - A)e^{-2t}$, and so

$$y'(t) = 2Ae^{2t} - 2(1-A)e^{-2t}$$

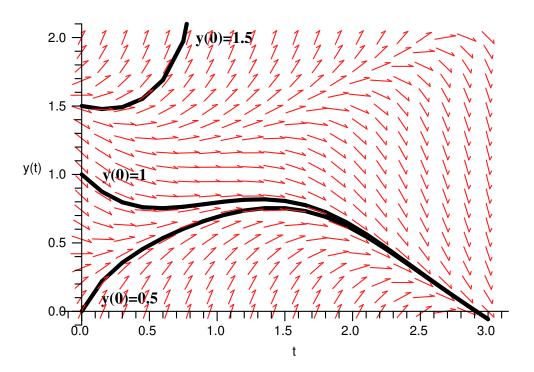
Plugging in y'(0) = 0 gives us

$$0 = 2A - 2(1 - A)$$
 that is $0 = 4A - 2$ or $A = \frac{1}{2}$

Hence, B = 1/2 and our solution is

$$y(t) = \frac{e^{2t}}{2} + \frac{e^{-2t}}{2}$$

4. The direction field for a differential equation is shown below.



(a) 15 points On the direction field, sketch and **clearly label** the three solutions with initial conditions

$$y_1(0) = 0$$
 $y_2(0) = 1$ $y_3(0) = 1.5$

(b) 5 points Are there any equilibrium solutions (also called stationary solutions, or constant solutions)? If there are, identify them. If not, give a reason why not.

Solution: There are no equilibrium solutions (at least not for $0 \le y \le 2$). If there were, such a solution would be of the form y(x) = c for some constant c, and its graph would be a horizontal line. Along this solution, the direction field must be slope 0 for all x. Since there are no such lines in the given direction field, we can have no equilibrium solutions.

5. Write solutions to the following initial-value problems.

(a) 10 points
$$y' = \frac{e^{5x}}{y^4}$$
 $y(0) = -1$

Solution: This is a separable equation, so we separate the variables to obtain

$$\int y^4 \, dy = \int e^{5x} \, dx$$

and so

$$\frac{y^5}{5} = \frac{e^{5x}}{5} + c$$
$$y = \sqrt[5]{e^{5x} + c}$$

Now using the initial condition y(0) = -1, we have

$$-1 = \sqrt[5]{1+c}$$

So c = -2 and our solution is

$$y = \sqrt[5]{e^{5x} - 2}$$

(b) 10 points
$$y' = 1 + y^2$$
 $y(1) = 0$

Solution: This equation is also separable. Separating gives

$$\int \frac{dy}{1+y^2} = \int dx$$

SO

$$\arctan y = x + c$$
 and hence $y = \tan(x + c)$

The initial condition gives us $0 = \tan(1+c)$, and since $\tan 0 = 0$, we know that c = -1. Hence the desired solution is

$$y = \tan(x - 1)$$