Today's Topic: Volumes
We leann how to calculate area, but what about volumes?

Consider: cylinder of radius r, length h.

How can we translate this into a question involving integrals?
Consider

How to calculate volume?
Idea: we take a slice at each x-value, calculate the area, and add them up.

We can also use this idea for more complicated shapes:

This is called the "disk method".

$$
\begin{aligned}
& V=\int_{a}^{b} A(x) d x \\
& A(x)=\text { cross sedional } \\
& \text { area at } x .
\end{aligned}
$$

Example: Cylinder.

$$
\begin{aligned}
V=\int_{0}^{h} \pi r^{2} d x & =\left.\pi r^{2} x\right|_{0} ^{h} \\
& =\pi r^{2} h
\end{aligned}
$$

In general: at each x, we get disk with radius $y=f(x)$.
So $A(x)=\pi(f(x))^{2}$.
Thus $V=\int_{a}^{b} \pi(f(x))^{2} d x$.
Example: Find the volume of the soled obtained by rotating about the x-axis the region under the curve $y=\sqrt{x}$ from 0 to 1 .

Area of each disk:

$$
A(x)=\pi(f(x))^{2}=\pi(\sqrt{x})^{2}=\pi x .
$$

So $V=\int_{0}^{1} A(x) d x=\int_{0}^{1} \pi x d x$

$$
\begin{aligned}
& =\left.\pi \frac{x^{2}}{2}\right|_{0} ^{1} \\
& =\frac{\pi}{2}
\end{aligned}
$$

Example: Find volume of solid obtained by rotating the region bounded by $y=x^{3}, y=8$ and $x=0$ about the y-axis.

We want to take horizontal slices.

Cross-sechonal area:

$$
\begin{aligned}
& A(y)=\pi\left(y^{1 / 3}\right)^{2}=\pi y^{2 / 3} \text {. } \\
& V=\int_{a}^{b} A(x) d x . \quad V=\int_{a}^{b} A(y) d y . \\
& V=\int_{0}^{8} \pi y^{2 / 3} d y \\
& =\pi\left[\frac{3 y^{5 / 3}}{5}\right]_{0}^{8}=\frac{96 \pi}{5} \text {. }
\end{aligned}
$$

Example: Find the volume of the solid obtained by rotating the area enclosed by $y=x ; \quad y=x^{2}$ about the x-axis

outer radius $=x$

inner radius $=x^{2}$.
$A(x)=$ area of outer dist - area of

$$
\begin{aligned}
& =\pi x^{2}-\pi\left(x^{2}\right)^{2} \text { inner disk. } \\
& =\pi\left(x^{2}-x^{4}\right) \\
V & =\int_{a}^{b} A(x) d x \\
& =\int_{0}^{1} \pi\left(x^{2}-x^{4}\right) d x
\end{aligned}
$$

$$
\begin{aligned}
& =\pi\left[\frac{x^{3}}{3}-\frac{x^{5}}{5}\right]_{0}^{1} \\
& =\frac{2 \pi}{15} .
\end{aligned}
$$

