Topic: Volume by Shells
Some volumes are difficult to calculate using the disk method.

For example: Find volume obtained by rotating about the y-axis the region bounded by $y=2 x^{2}-x^{3}$ and $y=0$.

We could try the washer method, but it is very hard to compute inner and outer radius.

Instead, we will use the What's the idea?

shell method:

- cylindrical shell = surface area of a cylinder.

We get a cylindincal shell af each point.

Idea: calculate surface area of each shell, and add them up!

Area of the cylinder shell:

$$
A(x)=2 \pi x f(x)
$$

Just like previous method,

$$
\begin{aligned}
V & =\int_{a}^{b} A(x) d x \\
& =\int_{a}^{b} 2 \pi x f(x) d x .
\end{aligned}
$$

Let's do the example: $y=2 x^{2}-x^{3}$

$$
\begin{aligned}
A(x) & =2 \pi x\left(2 x^{2}-x^{3}\right) \\
& =2 \pi\left(2 x^{3}-x^{4}\right) . \\
V & =\int_{0}^{2} A(x) d x \\
& =2 \pi \int_{0}^{2}\left(2 x^{3}-x^{4}\right) d x \\
& =2 \pi\left[\frac{x^{4}}{2}-\frac{x^{5}}{5}\right]_{0}^{2}=\frac{16 \pi}{5} .
\end{aligned}
$$

Example: Find the volume of the solid obtained by rotating about the y-axis the region between $y=x$ and $y=x^{2}$.
 height $=x-x^{2}$.

$$
\begin{aligned}
A(x) & =\left(x-x^{2}\right) 2 \pi x \\
& =2 \pi\left(x^{2}-x^{3}\right) .
\end{aligned}
$$

$$
\begin{aligned}
V & =\int_{0}^{1} 2 \pi\left(x^{2}-x^{3}\right) d x \\
& =2 \pi\left[\frac{x^{3}}{3}-\frac{x^{4}}{4}\right]_{0}^{1}=\frac{\pi}{6} .
\end{aligned}
$$

Example: Find the Volume obtained by rotating the region under the cure $y=\sqrt{x}$ from O to 1 about the x-axis.

$$
\begin{aligned}
& A(y)=2 \pi y\left(1-y^{2}\right) \\
& V(y)=\int_{0}^{1} 2 \pi\left(y-y^{3}\right) d y=x=y^{2} . \\
&
\end{aligned}
$$

