Todays Topic: The Substitution Rule It's important to be able to find antiderwatures in order to evaluate integrals. Consider $\int 2x \int 1 + x^2 dx$ * we can't quite integrate * Goal: to simplify until we can. Method: a substitution. Let $u = 1 + x^2$ Taking derivatives: du= 2×d× Now: $\int J_{1+x^{2}} \cdot 2x dx = \int J u du$ $= \int u^{1/2} du$ $= \frac{2u^{3/2} + C}{3} = \frac{2}{3}(1 + x^2)^{3/2} + C$ In general, this method works for integrals of the form: $\int f(q(x)) q'(x) dx$ Recall: d(f(q(x))) = f'(q(x))q'(x)

Let u=g(x). Then du=g'(x)dx, and $\int f(g(x))g'(x)dx = \int f(u) du$ Note: this should remind you of the chain rule. - in fact, this is exactly the inverse process. <u>Substitution Rule</u>: If u=g(x) is a differentiable function, and f is a continuous function, Jf(g(x))g'(x)dx = Jf(u)du Example: Find $\int x^3 \cos(x^4 + 2) dx$. We can't integrate $\cos(x^4+2)$, but <u>can</u> integrate something like $\cos(u)$. Let $u = x^{4} + 2$ $du = 4x^{3}dx$, so $\frac{1}{4}du = x^{3}dx$. Now $\int x^3 \cos(x^4+2) dx = \int \cos(u) \cdot \frac{1}{4} du$ $= \frac{1}{4} \int \cos(u) du$ $= \lim_{\mu} \operatorname{sun}(\omega) + C$

$$= \frac{1}{4} \sin(x^{4} + 2) + C$$

Main challenge: finding the "correct" substitution.
Comes with practice:
Try something: if it makes the integral more
complicated, it wasn't the best
choice - try enother:
This is common.
Example: Find $\int JZx+1^{\circ} dx$.
• Let $u=2x+1$. Then $du=2 dx$
so $dx=1 du$.
• $\int JZx+1 dx = \int Ju \ 1 \ du$
 $= \frac{1}{2} \int u^{1/2} du$
 $= \frac{1}{2} \int u^{1/2} du$
 $= \frac{1}{3} \int u^{1/2} du$
 $= (2x+1)^{3/2} + C$.
Note: We could have chosen $u=JZx+1^{\circ}$.
Note: We could have chosen $u=JZx+1^{\circ}$.

Then
$$\int J2x+1 dx = \int u \cdot u \, du = \int u^2 \, du$$

If you continue, you will get the same
answer (check for yourself!).
Example: $\int tan \times dx$.
Not innestiately of the right form:
 $\int tan \times dx = \int Sun \times dx$.
 $\int tan \times dx = \int Sun \times dx$.
 $\int tan \times dx = \int Sun \times dx$.
 $\int tan \times dx = \int -du$
 $= - \ln |u| + C$
 $= - \ln |u| + C$
 $= - \ln |u| + C$.
Evaluating definite integrals with substitution:
 2 methods:
 (f) evaluate indefinite integral first, then

evaluate at limits.

Dehange the limits when we do the sub.

Let us illustrate method (2): Find $\int_{1}^{2} \frac{dx}{(3-5\times)^{2}}$.

• Let
$$u = 3 - 5x$$
. Then $du = -5dx$
 $dx = -1du$
5
• Limits: when $x=1$, $u = 3 - 5 \cdot 1 = -2$
when $x = 2$, $u = 3 - 10 = -7$.

$$\int_{1}^{2} \frac{dx}{(3-5\times)^{2}} = \int_{-2}^{-7} \frac{1}{u^{2}} \cdot \begin{pmatrix} -1 \\ 5 \end{pmatrix} du .$$

$$= -\frac{1}{5} \int_{-2}^{-7} \frac{1}{u^{2}} du$$

$$= -\frac{1}{5} \int_{-2}^{-7} \frac{1}{u^{2}} du$$

$$= -\frac{1}{5} \int_{-1}^{-7} \frac{1}{u^{2}} du$$

$$= -\frac{1}{5} \int_{-1}^{-7} \frac{1}{u^{2}} = \frac{1}{14} .$$