Today'stopic: Fundamental Theorem of Calculus
Goal: establish a connection between differential and integration taking derivatives \Leftrightarrow tangent problem. integration \Leftrightarrow area problem
The first part of the Fundamental Theorem deals with functions of the form:

$$
g(x)=\int_{a}^{x} f(t) d t
$$

where:
$f(t)$ is a continuous function $[a, b]$ x is a variable in $[a, b]$.

Note: $g(x)$ only depends on x.

- If x takes some value, e.g $x=7$, then $\int_{a}^{7} f(t) d t$ is a number.
think: area under the curve between $t=a$ and $t=x=7$
- If x varies, then the value of $\int_{a}^{x} f(t) d t$ also varies.

We can picture this as follows:

We can think of $g(x)$ as calculating the area under the curve "so far".
$\frac{\text { Example: Consider }}{y} \quad g(x)=\int_{1}^{x} t^{2} d t$

Here, $\quad f(t)=t^{2}$
We can explicity find a formula for $g(x)$:

$$
g(x)^{1}=\int_{1}^{x} t^{2} d t=\left[\frac{t^{3}}{3}\right]_{1}^{x}=\frac{x^{3}}{3}-\frac{1}{3}
$$

Notice that since $g(x)=\frac{x^{3}}{3}-\frac{1}{3}$, we have $g^{\prime}(x)=\frac{3 x^{2}}{3}=x^{2}$.
In this case, $g^{\prime}(x)=f(x)$.
In fact, this is always true.
Fundamental Theorem of Calculus 1: il l is a continuous function on $[a, b]$. then the function

$$
g(x)=\int_{a}^{x} f(t) d t \quad \text { bor } a \leqslant x \leqslant b
$$

is an antiderivative of l, that is

$$
g^{\prime}(x)=f(x)
$$

In other notation: $\frac{d}{d x}\left(\int_{a}^{x} f(t) d t\right)=f(x)$

Roughly: integrate first, and then differentiate, we get back the original lunation f.

Example : Find the derivative of $g(x)=\int_{0}^{x} \sqrt{1+t^{2}} d t$ - $f(t)=\sqrt{1+t^{2}}$ is continuous, so we can use FTC:

$$
\begin{aligned}
g^{\prime}(x) & =l(x) \\
& =\sqrt{1+x^{2}}
\end{aligned}
$$

Example: Find the derivative of $g(x)=\int_{1}^{x^{4}} \sec (t) d t$.

- $f(t)=\sec (t)$. is continuous

Careful! Have upper bound: x^{4}
not just x !
Use a substitution, partnered with Chain rule:

$$
\begin{aligned}
u & =x^{4} \\
\frac{d}{d x} \int_{1}^{x^{4}} \sec (\theta) d t & =\frac{d}{d x} \int_{1}^{u} \sec (t) d t \\
& =\frac{d}{d u}\left(\int_{1}^{u} \sec (t) d t\right) \cdot \frac{d u^{V}}{d x} \text {. rutile }
\end{aligned}
$$

FTC:

$$
\begin{aligned}
& =(\sec (u)) \cdot 4 x^{3} \\
& =\sec \left(x^{4}\right) \cdot 4 x^{3} .
\end{aligned}
$$

We will now state the FTC in full:
Fundamental Theorem of Calculus: Let f be continuous function on $[a, b]$.

1. If $g(x)=\int_{a}^{x} f(t) d t$, then $g^{\prime}(x)=f(x)$.
2. $\int_{a}^{b} f(x) d x=F(b)-F(a)$ where F is an antiderivative of f, ie $F^{\prime}=f$.
This is just evaluation theorem.
Applications : - finding area volume are length of curves probability etc.. .
