Topic: Applications to Physics \& Engineering
Work
Informally, work is the total amount of effort required to complete a task.
Technically: depends on the idea of a force

- If an object moves in a straight line with position function $s(t)$, force is defined:

$$
F=m \frac{d^{2} s}{d t^{2}} \quad N=\log m / s^{2}
$$

- If acceleration is constant, so is the force F.
- We define work done:

$$
\begin{aligned}
W & =\text { Pore } \times \text { distance } \\
& =F d \quad J=N \cdot m
\end{aligned}
$$

- What happens if the Force F is changing?

Suppose object moves along x-axis from $x=a$ to $x=b$, and the lore is given by

$$
f(x) .
$$

- divide $[a, b]$ into n intervals, of width Δx
- choose sample pto $x_{1}^{a x}, \ldots, x_{n}^{*}$.
- If n is very large, Δx is very
small.
- $f\left(x_{i}^{*}\right)=$ lorre doesn't change much in $\left[x_{i}^{*}, x_{i+1}\right]$.

$$
W \approx \sum_{i=1}^{n} f\left(x_{i}^{w}\right) \Delta x
$$

We define the total work done:

$$
\begin{aligned}
W & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x \\
& =\int_{a}^{b} f(x) d x
\end{aligned}
$$

亿Corce at distance x.

Example: When a particle is located a distance of x feet away from the origin, a force of $x^{2}+2 x$ pounds acts on it
How much work is done in moving it from $x=1$ to $x=3$?

$$
\begin{aligned}
W & =\int_{1}^{3} f(x) d x \\
& =\int_{1}^{3} x^{2}+2 x d x \\
& =\frac{x^{3}}{3}+\left.x^{2}\right|_{1} ^{3}=\frac{50}{3} \text { Uo.ft }
\end{aligned}
$$

Example: A force of 40 N is required to hold a spring that has been stretched from natural length of $10 \mathrm{~cm} t 0$ length of 15 cm . How much work is done stretching from 15 cm to 18 cm ?

Hooke's law : $f(x)=k x$
frovorn
\qquad $k=$ spring constant.

We first find the spring constant R : amount stretched $=15-10 \mathrm{~cm}=5 \mathrm{~cm}=0.05 \mathrm{~m}$

$$
\begin{array}{r}
k 0.05=f(0.05)=40 \\
k=800
\end{array}
$$

Thus $f(x)=800 x \quad N$.
and

$$
\begin{aligned}
W & =\int_{0.05}^{0.08} 800 x d x \\
& =\left.400 x^{2}\right|_{0.05} ^{0.08} \\
& =1.56 \mathrm{~J} \mathrm{Nm}
\end{aligned}
$$

