Topic: Are Length

Imagine this curve is a string - to measure the length, we could straighten it out and measure!

That's called: are length.
But how can we actually calculate the length?
If the curve is made up of straight line segments, we can use the distance formula on each segment:

$$
\begin{aligned}
\text { length }(1) & =3-1=2 \\
\text { length }(1) & =\sqrt{1^{2}+3^{2}} \\
& =\sqrt{1+9} \\
& =\sqrt{10} .
\end{aligned}
$$

$$
\text { length (3) }=1
$$

Total length $=2+\sqrt{10}+1=3+\sqrt{10}$.

Idea: approx our curve by line segments, add all the distances.
$y=f(x) \quad$ - make smaller line segments

Let's zoom in:

$$
\text { Length }=\sqrt{\varepsilon^{2}+\delta^{2}}
$$

Suppose $x=f(t) ; \quad y=g(t)$
change in $x=\frac{d f}{d t} \quad$ change in $y=\frac{d g}{d E}$

$$
\begin{aligned}
& \text { Length }=\sqrt{\left(\frac{d P}{d t}\right)^{2}+\left(\frac{d g}{d t}\right)^{2}} \\
& \underbrace{\}^{\frac{d g}{d t}}=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}}_{\frac{d p}{d t}}
\end{aligned}
$$

Are Length

$$
L=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

Example: Find the are length of the curve given by $x=t^{2}, y=t^{3}$ between the points

$$
\begin{aligned}
& (x, y)=(1,1) \text { and }(x, y)=(4,8) . \\
& x=1, \quad t=1 \Rightarrow t=1 \quad y=1 . \\
& x=4, \Rightarrow t= \pm 2
\end{aligned}
$$

because $y=8, t=2$

$$
\begin{aligned}
& L=\int_{1}^{2} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \\
& x=t^{2} \quad y=t^{3} \\
& \frac{d x}{d t}=2 t \quad \frac{d y}{d t}=3 t^{2} . \\
& =\int_{1}^{2} \sqrt{4 t^{2}+9 t^{4}} d t \\
& =\int_{1}^{2} t \sqrt{4+9 t^{2}} d t \\
& u=4+9 t^{2} \\
& d u=18 t d t \\
& \frac{1}{18} d u=t d t \\
& =\int_{13}^{40} \frac{1}{18} \sqrt{u} d u \\
& t=1 \quad u=4+9=13 \\
& t=2 \quad u=4+9.4=40
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{18}\left[\frac{2 u^{3 / 2}}{3}\right]_{13}^{40} \\
& =\frac{1}{27}[80 \sqrt{10}-13 \sqrt{13}]
\end{aligned}
$$

Recall: $\quad x=f(t) \quad y=g(t)$ then arelength of the curve between

$$
L=\int_{a}^{b} \sqrt{\left(\frac{d f}{d t}\right)^{2}+\left(\frac{d g}{d t}\right)^{2}} d t=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

Today: $\quad y=f(x) \quad a \leqslant x \leqslant b$
Our parametrisation: $x=x \quad y=f(x)$

$$
\begin{aligned}
L & =\int_{a}^{b} \sqrt{1+\left(f^{\prime}\right)^{2}} d x \\
& =\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x .
\end{aligned}
$$

Example: Find the are length of the curve

$$
y=\frac{x^{2}}{4}-\frac{1}{2} \ln (x)
$$

between the points $x=1$ and $x=2$.

$$
\begin{aligned}
L & =\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \\
\frac{d y}{d x} & =\frac{x}{2}-\frac{1}{2 x} \\
& =\frac{x^{2}-1}{2 x} \\
1+\left(\frac{d y}{d x}\right)^{2} & =1+\frac{x^{4}-2 x^{2}+1}{4 x^{2}} \\
& =\frac{4 x^{2}}{4 x^{2}}+\frac{x^{4}-2 x^{2}+1}{4 x^{2}} \\
& =\frac{x^{4}+2 x^{2}+1}{4 x^{2}} \\
& =\frac{\left(x^{2}+1\right)^{2}}{(2 x)^{2}} \\
L & =\int_{1}^{2} \sqrt{\frac{\left(x^{2}+1\right)^{2}}{(2 x)^{2}}} d x
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{1}^{2} \frac{x^{2}+1}{2 x} d x \\
& =\int_{1}^{2} \frac{x^{2}}{2 x}+\frac{1}{2 x} d x \\
& =\int_{1}^{2} \frac{x}{2}+\frac{1}{2 x} d x \\
& =\left[\frac{x^{2}}{4}+\frac{1}{2} \ln (x)\right]_{1}^{2} \\
& =1+\frac{1}{2} \ln (2)-\left(\frac{1}{4}+\frac{1}{2} \ln (1)\right) \\
& =\frac{3}{4}+\frac{1}{2} \ln (2) .
\end{aligned}
$$

