Math 126 Solutions to Midterm 2 (instrumental)

1. Determine these EASY antiderivatives. You should be able to do these **very well**. In these problems, no justification is needed. Remember the '+C'.

6 pts

(a)
$$\int \frac{4}{x} dx$$

Solution:

$$\int \frac{4}{x} \, dx = \boxed{4 \ln|x| + C}$$

6 pts

(b)
$$\int 8\sin(x) \, dx$$

Solution:

$$\int 8\sin(x) \, dx = \boxed{-8\cos(x) + C}$$

6 pts

(c)
$$\int e^{2x} dx$$

Solution:

$$\int e^{2x} \, dx = \boxed{\frac{1}{2}e^{2x} + C}$$

6 pts

(d)
$$\int \frac{4}{t^2 + 1} dt$$

Solution:

$$\int \frac{4}{t^2 + 1} \, dt = \boxed{4 \arctan(t) + C}$$

6 pts

(e)
$$\int \frac{1}{\sqrt{1-u^2}} du$$

Solution:

$$\int \frac{1}{\sqrt{1-u^2}} \, du = \boxed{\arcsin(u) + C}$$

2. In this question we tell you which method we suggest you use. Use the back of the previous page if you need more space.

15 pts

(a) Suggested method: substitution $\int \frac{x}{1+x^2} dx$

Solution: Make the substitution $u = 1 + x^2$, so that du = 2dx, or $\frac{1}{2}du = dx$. Then

$$\int \frac{x}{1+x^2} dx = \frac{1}{2} \int \frac{1}{u} du = \frac{1}{2} \ln|u| + C = \boxed{\frac{1}{2} \ln|1+x^2| + C}$$

Note that since $1 + x^2 > 0$ for all x, the absolute value is not necessary; the answer $\frac{\ln(1+x^2)}{2} + C$ is fine, too.

15 pts

(b) Suggested method: substitution $\int \frac{e^{\sqrt{z+3}}}{\sqrt{z+3}} \, dz$

Solution: Make the substitution $u = \sqrt{z+3}$. Then

$$du = \frac{1}{2\sqrt{z+3}} dz$$
 or $2du = \frac{dz}{\sqrt{z+3}}$.

Thus,

$$\int \frac{e^{\sqrt{z+3}}}{\sqrt{z+3}} dz = 2 \int e^u du = 2e^u + C = \boxed{2e^{\sqrt{z+3}} + C}$$

15 pts

(c) Suggested method: substitution $\int \frac{\ln(y)}{y} dy$

Solution: Here, we let $u = \ln(y)$ and so $du = \frac{dy}{y}$. This means we have

$$\int \frac{\ln(y)}{y} dy = \int u \, du = \frac{u^2}{2} + C = \boxed{\frac{\left(\ln(y)\right)^2}{2} + C}$$

3. In this question we tell you which method we suggest you use. Use the back of the previous page if you need more space.

15 pts

(a) Suggested method: integration by parts $\int x^4 \ln(x) dx$

Solution: Take $u = \ln(x)$ and $dv = x^4 dx$. Then $du = \frac{1}{x} dx$ and $v = \frac{x^5}{5}$. So:

$$\int x^4 \ln(x) \, dx = \frac{x^5 \ln(x)}{5} - \frac{1}{5} \int x^5 \cdot \frac{1}{x} \, dx = \frac{x^5 \ln(x)}{5} - \frac{1}{5} \int x^4 \, dx = \boxed{\frac{x^5 \ln(x)}{5} - \frac{x^5}{25} + C}$$

15 pts

(b) Suggested method: integration by parts $\int xe^{3x} dx$

Solution: Take u = x and $dv = e^{3x} dx$. Then du = dx and $v = \frac{1}{3}e^{3x}$, and so we have

$$\int xe^{3x} dx = \frac{x}{3}e^{3x} - \frac{1}{3}\int e^{3x} dx = \boxed{\frac{xe^{3x}}{3} - \frac{e^{3x}}{9} + C}$$

15 pts

(c) Suggested method: integration by parts $\int \sin(x)e^{2x} dx$

Solution: Take $u=e^{2x}$ and $dv=\sin(x)\,dx$. Then $du=2e^{2x}\,dx$ and $v=-\cos(x)$. So we have

$$\int \sin(x)e^{2x} \, dx = -\cos(x)e^{2x} + 2\int \cos(x)e^{2x} \, dx$$

(we have a + before the integral because we were subtracting a negative). To do the second integral, we take $u=e^{2x}$ and $dv=\cos x\,dx$. Then $du=2e^{2x}\,dx$ and $v=\sin x$. This gives us

$$\int \sin(x)e^{2x} dx = -\cos(x)e^{2x} + 2\left(\sin(x)e^{2x} - 2\int \sin(x)e^{2x} dx\right)$$

Multiplying out gives

$$\int \sin(x)e^{2x} dx = -\cos(x)e^{2x} + 2\sin(x)e^{2x} - 4\int \sin(x)e^{2x} dx$$

or, equivalently,

$$5 \int \sin(x)e^{2x} dx = -\cos(x)e^{2x} + 2\sin(x)e^{2x} + C$$

Thus, we have

$$\int \sin(x)e^{2x} dx = \boxed{\frac{-\cos(x)e^{2x} + 2\sin(x)e^{2x}}{5} + C}$$

4. Determine the following antiderivatives. Use the back of the previous page if you need more space.

15 pts

(a) $\int \sin^3(x) \, dx$

Solution: We use the identity $\sin^2(x) = 1 - \cos^2(x)$ to get

$$\int \sin^3(x) \, dx = \int \left(1 - \cos^2(x)\right) \sin(x) \, dx.$$

Now take $u = \cos(x)$ and $du = -\sin(x) dx$, giving

$$\int \sin^3(x) \, dx = -\int (1 - u^2) \, du = -u + \frac{u^3}{3} + C = \boxed{\frac{\cos^3(x)}{3} - \cos(x) + C}$$

15 pts

(b) $\int \frac{1}{\sec(6x)} \, dx$

Solution:

$$\int \frac{1}{\sec(6x)} dx = \int \cos(6x) dx = \boxed{\frac{1}{6}\sin(6x) + C}$$

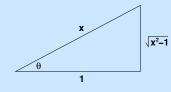
15 pts

(c) $\int \frac{1}{x^2 \sqrt{x^2 - 1}} dx$

Solution: Take $x = \sec \theta$ so $dx = \sec \theta \tan \theta d\theta$. Then we have

$$\int \frac{1}{x^2 \sqrt{x^2 - 1}} \, dx = \int \frac{\sec \theta \tan \theta \, d\theta}{\sec^2 \theta \sqrt{\sec^2 \theta - 1}} = \int \frac{\tan \theta \, d\theta}{\sec \theta \sqrt{\tan^2 \theta}} = \int \frac{d\theta}{\sec \theta} = \int \cos \theta \, d\theta$$

This means we have $\sin\theta+C$ as our answer, but of course we need the answer in terms of x. Recall that we took $x=\sec\theta$, and so $\sin\theta=\frac{\sqrt{x^2-1}}{x}$ (see figure). Thus, we have shown



$$\int \frac{1}{x^2 \sqrt{x^2 - 1}} \, dx = \boxed{\frac{\sqrt{x^2 - 1}}{x} + C}$$

5. Evaluate these definite integrals. Use the back of the previous page if you need more space.

15 pts

(a)
$$\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{1 - x^2} \ dx$$

Solution: We use partial fractions:

$$\frac{1}{1 - x^2} = \frac{A}{1 + x} + \frac{B}{1 - x}$$

so 1 = A(1-x) + B(1+x). Thus

$$A + B = 1$$
 $-A + B = 0$ hence $A = \frac{1}{2}, B = \frac{1}{2}$

$$\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{1-x^2} dx = \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1/2}{1+x} + \frac{1/2}{1-x} dx = \frac{1}{2} \ln|1+x| - \frac{1}{2} \ln|1-x| \Big|_{-1/2}^{1/2}$$

$$= \frac{1}{2} \left[\ln\left(\frac{3}{2}\right) - \ln\left(\frac{1}{2}\right) - \ln\left(\frac{1}{2}\right) + \ln\left(\frac{3}{2}\right) \right]$$

$$= \ln\left(\frac{3}{2}\right) - \ln\left(\frac{1}{2}\right) = \boxed{\ln(3)}$$

15 pts

(b)
$$\int_{-100}^{100} \frac{\sin^{21}(x)}{1 + e^{x^2}} dx$$

Solution: Since $\frac{\sin^{21}(x)}{1 + e^{x^2}}$ is an odd function and the bounds are symmetric with respect to 0, the value of the integral is $\boxed{0}$.

15 pts

(c)
$$\int_0^1 \frac{x}{\sqrt{4-x^2}} dx$$

Solution: Let $u = 4 - x^2$ so that du = -2x dx. When x = 0, u = 4 and when x = 1, u = 3. Thus we have

$$\int_0^1 \frac{x}{\sqrt{4-x^2}} \, dx = -\int_4^3 \frac{du}{2\sqrt{u}} = -\sqrt{u} \Big|_4^3 = -\sqrt{3} + \sqrt{4} = \boxed{2-\sqrt{3}}.$$

6. Since
$$\int_0^1 \frac{1}{1+x^2} dx = \arctan(1) = \frac{\pi}{4}$$
, evaluating the integral $\int_0^1 \frac{4}{1+x^2} dx$ gives π .

20 pts

(a) Use Simpson's rule with 2 intervals to estimate $\int_0^1 \frac{4}{1+x^2} dx$.

Solution: Since there are two intervals, the width of each is 1/2. Thus, Simpson's rule gives:

$$\frac{1}{3} \cdot \frac{1}{2} \Big(f(0) + 4f(1/2) + f(1) \Big) = \frac{1}{6} \Big(4 + 4 \left(\frac{4}{1 + 1/4} \right) + 2 \Big) = \boxed{\frac{94}{30}} \approx 3.13333$$

20 pts

(b) How many intervals are needed to estimate $\int_0^1 \frac{4}{1+x^2} dx = \pi$ within .0001 using the trapezoid rule?¹

Solution: We use the information in the footnote. We need to determine n so that

$$\frac{1}{12n^2}K \le .0001$$

where K is the maximum of the absolute value of the second derivative of $4/(1+x^2)$ for x between 0 and 1. Since $\left|\frac{4(6x^2-2)}{(1+x^2)^3}\right|$ is a decreasing function on this interval, the maximum occurs at x=0, so we take K=|-8/1|=8.

To solve $\frac{8}{12n^2} \le .0001$, we multiply both sides by $10000n^2$ to get

$$\frac{80000}{12} \le n^2,$$

so *n* is the smallest integer bigger than $\sqrt{20000/3} \approx 81.6$.

Thus, n = 82

¹Use the following estimate for E_T using n intervals: If $|f''(x)| \le K$ then $E_T \le K \frac{(b-a)^3}{12n^2}$. If $f(x) = \frac{1}{1+x^2}$, then $f''(x) = \frac{6x^2-2}{(1+x^2)^3}$