MATH 126

10 pts

1. $\int \sin ^{2}(4 x) d x$

Solution: Using the identity $\sin ^{2}(\theta)=\frac{1}{2}(1-\cos (2 \theta))$ (with $\theta=2 x$), we get

$$
\int \sin ^{2}(4 x) d x=\frac{1}{2} \int 1-\cos (8 x) d x=\frac{1}{2} x-\frac{1}{2} \int \cos (8 x) d x=\frac{x}{2}-\frac{\sin (8 x)}{16}+C
$$

where we used the substitution $u=8 x \quad d u=8 d x \quad \frac{d u}{8}=d x$ in the second integral.

10 pts
2. $\int_{0}^{\frac{\pi}{2}} \sin ^{5} x \cos ^{3} x d x$

Solution: Here we use the identity $\cos ^{2} x=1-\sin ^{2} x$ so that we can make the subsitution $u=\sin x \quad d u=\cos x d x$ and have a lovely time. When we do that, observe that if $x=0$, $u=\sin (0)=0$ and when $x=\pi / 2, u=\sin (\pi / 2)=1$.

$$
\int_{0}^{\frac{\pi}{2}} \sin ^{5} x \cos ^{3} x d x=\int_{0}^{\frac{\pi}{2}} \sin ^{5} x\left(1-\sin ^{2} x\right) \cos x d x=\int_{0}^{1} u^{5}\left(1-u^{2}\right) d u=\frac{u^{6}}{6}-\left.\frac{u^{8}}{8}\right|_{0} ^{1}=\frac{1}{6}-\frac{1}{8}=\frac{1}{24}
$$

10 pts 3. $\int \frac{8 x-7}{x^{2}-x-2} d x$
Solution: Observe that $x^{2}-x-2=(x-2)(x+1)$, so partial fractions will be helpful here. So we want to find A and B so that

$$
\frac{8 x-7}{(x-2)(x+1)}=\frac{A}{x-2}+\frac{B}{x+1} \quad \text { or } \quad 8 x-7=A(x+1)+B(x-2) .
$$

Since this must be true for every x, we can choose helpful values of x to make things easier.
If $x=2$, we get

$$
16-7=A \cdot 0+B \cdot 3, \quad \text { so } \quad B=9 / 3=3
$$

When $x=-1, \quad-8-7=A \cdot(-3)+B \cdot 0, \quad$ so $\quad A=15 / 3=5$.
If you prefer to multiply things out, match coefficients, and solve the resulting equations, you would get $8 x-7=A x-2 A+B x+B$, which means you need to solve

$$
8=A+B \quad-7=-2 A+B
$$

Subtracting the second from the first gives $15=3 A$, or $A=3$. Substituting that into the first equation gives $8=3+B$, so $B=5$.
If you don't make a mistake, you always get the same answer, so either method is fine.
Using $A=5, B=3$ gives us

$$
\int \frac{8 x-7}{x^{2}-x-2} d x=\int \frac{3 d x}{x-2}+\int \frac{5 d x}{x+1}=3 \ln |x-2|+5 \ln |x+1|+C
$$

10 pts
4. $\int_{2}^{\infty} \frac{d t}{t^{3}}$

Solution: This is an improper integral, so we must compute it as a limit.

$$
\int_{2}^{\infty} \frac{d t}{t^{3}}=\lim _{M \rightarrow \infty} \int_{2}^{M} \frac{d t}{t^{3}}=\lim _{M \rightarrow \infty}\left(-\left.\frac{1}{2 t^{2}}\right|_{2} ^{M}\right)=\lim _{M \rightarrow \infty}\left(-\frac{1}{2 M^{2}}+\frac{1}{8}\right)=0+\frac{1}{8}=\frac{1}{8}
$$

15 pts
5. $\int \sec ^{4} x d x$

Solution: Since the derivative of $\tan x$ is $\sec ^{2} x$ and we know that $\sec ^{2} x=1+\tan ^{2} x$, we can write $\sec ^{4} x=\left(1+\tan ^{2} x\right) \sec ^{2} x$. This will be helpful, since then we can make the substitution $u=\tan x d u=\sec ^{2} x d x$, and then party like it's 1999 (though, sadly, without Prince).

$$
\int \sec ^{4} x d x=\int\left(1+\tan ^{2} x\right) \sec ^{2} x d x=\int\left(1+u^{2}\right) d u=u+\frac{u^{3}}{3}+C=\tan x+\frac{\tan ^{3} x}{3}+C
$$

15 pts
6. $\int_{4}^{12} \frac{d x}{\sqrt[3]{x-4}}$

Solution: Here we make the substitution $w=x-4$, so $d w=d x$; when $x=4, w=0$ and when $x=12, w=8$. The resulting integral is improper at $w=0$ (or $x=4$), so we need to write it as a limit.

$$
\int_{4}^{12} \frac{d x}{\sqrt[3]{x-4}}=\int_{0}^{8} \frac{d x}{\sqrt[3]{w}}=\lim _{t \rightarrow 0^{+}} \int_{t}^{8} \frac{d x}{\sqrt[3]{w}}=\lim _{t \rightarrow 0^{+}}\left(-\left.\frac{3}{2} w^{2 / 3}\right|_{t} ^{8}\right)=\lim _{t \rightarrow 0^{+}}\left(-\frac{3}{2} t^{2 / 3}+6\right)=0+6=6 .
$$

Remember that $\frac{3}{2} \cdot 8^{2 / 3}=\frac{3}{2}(\sqrt[3]{8})^{2}=12 / 2=6$.

15 pts
7. $\int \frac{x^{2}-x-6}{\left(x^{2}+1\right)(2 x-1)} d x$

Solution: This is another partial fractions problem. We write

$$
\frac{x^{2}-x-6}{\left(x^{2}+1\right)(2 x-1)}=\frac{A x+B}{x^{2}+1}+\frac{C}{2 x-1},
$$

remembering that the numerator in each term must be a polynomial one degree lower than the denominator. This means we need to find A, B, and C so that

$$
x^{2}-x-6=(A x+B)(2 x-1)+C\left(x^{2}+1\right) .
$$

Setting $x=\frac{1}{2}$ gives $\frac{1}{4}-\frac{1}{2}-6=0+C\left(\frac{1}{4}+1\right)$, that is, $-\frac{25}{4}=\frac{5}{4} C$ or $C=-5$.
Now we set $x=0$ to get $-6=-B+C$. But since $C=-5$, we obtain $B=1$.
Finally, we pick some other value of x, for example, $x=1$. This gives us $1+1-6=(A+B)(2+1)+C(1+1)$ or $-6=3 A+3 B+2 C$. But we already know $B=1$ and $C=-5$, so we have $-4=3 A+3-10=3 A-7$. That is, $3=3 A$ or $A=1$.

If you prefer the other way, multiplying everything out and collecting terms gives you
$x^{2}-x-6=(2 A+C) x^{2}+(-A+2 B) x+(-B+C)$ or $\{2 A+C=1,-A+2 B=-1,-B+C=-6\}$
These give the same solutions $A=3, B=1$, and $C=-5$, but the details are rather tedious, so I'm skipping them.

Now back the the calculus.

$$
\begin{aligned}
\int \frac{x^{2}-x-6}{\left(x^{2}+1\right)(2 x-1)} d x & =\int \frac{3 x d x}{x^{2}+1}+\int \frac{d x}{x^{2}+1}-5 \int \frac{d x}{2 x-1} \\
& =\frac{3}{2} \int \frac{d u}{u}+\arctan x-\frac{5}{2} \int \frac{d w}{w} \\
& =\frac{3}{2} \ln \left(x^{2}+1\right)+\arctan x-\frac{5}{2} \ln |2 x-1|+K
\end{aligned}
$$

where we made the substitutions $u=x^{2}-1$ (so $d u=2 x d x$) in the first integral and $w=2 x-1$ (so $d w=2 d x$) in the third one.
8. The region R in the first quadrant is bounded by $y=4-x^{2}$ and $y=4-2 x$.
(a) Sketch the region R.

Solution:

$12 \mathrm{pts} \quad$ (b) Find the area of R.
Solution: Note that the two curves cross at $x=0$ and $x=2$: we solve $4-x^{2}=4-2 x$, so we have $0=x^{2}-2 x=x(2-x)$. Also notice that for $0 \leq x \leq 2,4-x^{2}$ is larger than $4-2 x$. So, the area is given by the integral

$$
\int_{0}^{2}\left(4-x^{2}\right)-(4-2 x) d x=\int_{0}^{2} 2 x-x^{2} d x=\frac{4}{3}
$$

