MAT 126 Solutions to Midterm 1 (Lachesis)

1. Evaluate each of the definite integrals below.

5 pts
(a) $\int_{-2}^{1} 3 x^{2}-6 x+1 d x$

Solution:

$$
\int_{-2}^{1} 3 x^{2}-6 x+1 d x=x^{3}-3 x^{2}+\left.x\right|_{-2} ^{1}=(1-3+1)-(-8-12-2)=-1+22=21
$$

5 pts
(b) $\int_{0}^{2}\left|1-x^{2}\right| d x$

Solution: Note that $1-x^{2}>0$ for $0<x<1$ and $1-x^{2}<0$ for $x>1$. This means that $x>1$, $\left|1-x^{2}\right|=-\left(1-x^{2}\right)=x^{2}-1$, but if $x \leq 1,\left|1-x^{2}\right|=1-x^{2}$, and we split the integral into two pieces.

$$
\begin{aligned}
\int_{0}^{2}\left|1-x^{2}\right| d x & =\int_{0}^{1}\left(1-x^{2}\right) d x+\int_{1}^{2}\left(x^{2}-1\right) d x \\
& =\left.\left(x-\frac{1}{3} x^{3}\right)\right|_{0} ^{1}+\left.\left(\frac{1}{3} x^{3}-x\right)\right|_{1} ^{2} \\
& =\left(\left(1-\frac{1}{3}\right)-0\right)+\left(\left(\frac{8}{3}-2\right)-\left(\frac{1}{3}-1\right)\right)=\frac{2}{3}+\frac{2}{3}+\frac{2}{3}=\frac{6}{3}=2
\end{aligned}
$$

5 pts
(c) $\int_{0}^{7} \sin (\pi x / 7) d x$

Solution: Make the substitution $u=\frac{\pi x}{7}$. Then $d u=\frac{\pi}{7} d x$, or $\frac{7}{\pi} d u=d x$. When $x=0, u=0$, and when $x=7, u=\pi$. Thus

$$
\begin{aligned}
\int_{0}^{7} \sin (\pi x / 7) d x & =\frac{7}{\pi} \int_{0}^{\pi} \sin (u) d u \\
& =-\left.\frac{7}{\pi} \cos (u)\right|_{0} ^{\pi}=-\frac{7}{\pi}(\cos (\pi)-\cos (0))=-\frac{7}{\pi}(-1-1)=\frac{14}{\pi}
\end{aligned}
$$

15 pts
2. Consider the function $f(x)=8+x^{3}$.
(a) Approximate the area lying under graph of $f(x)$, above the x-axis, and between the vertical lines $x=-2$ and $x=4$ using 3 rectangles of equal width, evaluated at the right endpoint of each interval.

Solution: Since we are using 3 rectangles of equal width and we need to go from -2 to 4 , each rectangle is of width 2 . Thus, we have

$$
2(f(0)+f(2)+f(4))=2(8+(16)+(72))=2 \cdot 96=192
$$

(b) Write a formula for the Riemann sum (using n rectangles of equal width) which represents the area under the graph of $f(x)$ for $-2 \leq x \leq 4$.

Solution: The width of each rectangle is $\frac{6}{n}$, and we start at $a=-2$, so we have $x_{i}=-2+\frac{6 i}{n}$. Thus, the appropriate Riemann sum (using right endpoints) is

$$
\sum_{i=1}^{n} \frac{6}{n}\left(8+\left(-2+\frac{6 i}{n}\right)^{3}\right)
$$

(c) Compute the limit of the above Riemann sum as $n \rightarrow \infty$. You can do this directly or by calculating an integral.
The formulx $\sum_{k=1}^{n} k=\frac{n(n+1)}{2}, \sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$ or $\sum_{k=1}^{n} k^{3}=\frac{n^{2}(n+1)^{2}}{4}$ could be helpful. Or not.
Solution: Doing it directly is not a good way to do this. It is much easier is to do the integral

$$
\int_{-2}^{4} 8+x^{3} d x=8 x+\left.\frac{x^{4}}{4}\right|_{-2} ^{4}=(32+64)-(-16+4)=96+12=108
$$

If you insist on doing the direct computation, here it is. It isn't pretty.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{6}{n}\left(8+\left(-2+\frac{6 i}{n}\right)^{3}\right) & =\lim _{n \rightarrow \infty} \frac{6}{n} \sum_{i=1}^{n}\left(8+\left(-8+\frac{72 i}{n}-\frac{216 i^{2}}{n^{2}}+\frac{216 i^{3}}{n^{3}}\right)\right) \\
& =\lim _{n \rightarrow \infty} \frac{6}{n}\left(\frac{72}{n} \sum_{i=1}^{n} i-\frac{216}{n^{2}} \sum_{i=1}^{n} i^{2}+\frac{216}{n^{3}} \sum_{i=1}^{n} i^{3}\right) \\
& =6 \cdot \lim _{n \rightarrow \infty}\left(\frac{72\left(n^{2}+n\right)}{2 n^{2}}-\frac{216\left(2 n^{3}+3 n^{2}+n\right)}{6 n^{3}}+\frac{216\left(n^{4}+2 n^{3}+n^{2}\right)}{4 n^{4}}\right) \\
& =6 \cdot \lim _{n \rightarrow \infty}\left(\frac{36\left(n^{2}+n\right)}{n^{2}}-\frac{36\left(2 n^{3}+3 n^{2}+n\right)}{n^{3}}+\frac{54\left(n^{4}+2 n^{3}+n^{2}\right)}{n^{4}}\right) \\
& =6 \cdot(36-72+54)=6 \cdot 18=108 .
\end{aligned}
$$

There was a typo in the formula for $\sum k^{2}$ on the exam. You should get full credit if you used the wrong formula correctly. In that case, the answer would come out as 324 .
3. Evaluate each of the indefinite integrals below.
(a) $\int \frac{3+x}{1+4 x^{2}} d x$

Solution:

$$
\int \frac{3+x}{1+4 x^{2}} d x=\int \frac{3 d x}{1+(2 x)^{2}}+\int \frac{x d x}{1+4 x^{2}}=\frac{3}{2} \arctan (2 x)+\int \frac{1 / 8 d u}{u}
$$

where we made the substitution $u=1+4 x^{2}$ (so $d u=8 x d x$) in the second integral. Thus, the integral becomes

$$
\frac{3}{2} \arctan (2 x)+\frac{\ln \left(1+4 x^{2}\right)}{8}+C
$$

5 pts
(b) $\int t e^{-3 t} d t$

Solution: Here, we integrate by parts, taking $u=t$ and $d v=e^{-3 t} d t$. Thus $d u=d t$ and $v=-\frac{1}{3} e^{-3 t}$. So

$$
\int t e^{-3 t} d t=-\frac{t e^{-3 t}}{3}+\frac{1}{3} \int e^{-3 t} d t=-\frac{t e^{-3 t}}{3}-\frac{e^{-3 t}}{9}+C
$$

(c) $\int \tan \phi d \phi$

Solution:

$$
\int \tan \phi d \phi=\int \frac{\sin \phi d \phi}{\cos \phi}=-\int \frac{d u}{u}=-\ln |u|+C=-\ln |\cos \phi|+C
$$

where we made the substution $u=\cos \phi$ so $d u=-\sin \phi d \phi$.
4. Let $f(x)$ be the function whose graph is shown at right, and let

$$
G(x)=\int_{-1}^{x} f(t) d t
$$

(a) Calculate $G(-2), G(-1)$, and $G(2)$.

If G is not defined, write something like " $G(5) \mathrm{DNE}^{\prime}$.

Solution: For all of these, we can just count the squares, remembering that those below the
axis are negative.

$$
\begin{aligned}
G(-2) & =\int_{-1}^{-2} f(t) d t=-\int_{-2}^{-1} f(t) d t=-(-2)=2 \\
G(-1) & =\int_{-1}^{-1} f(t) d t=0 \\
G(2) & =\int_{-1}^{2} f(t) d t=\int_{-1}^{0} f(t) d t+\int_{0}^{1} f(t) d t+\int_{1}^{2} f(t) d t=0+1+0=1 .
\end{aligned}
$$

5 pts (b) For what x with $-2 \leq x \leq 2$ is $G(x)$ decreasing? (If there are none, write "none".)
Solution: Since $G^{\prime}(x)=f(x), G(x)$ decreases when $f(x)<0$ and increases when $f(x)>0$. Thus $G(x)$ is decreasing for $x<-\frac{1}{2}$.

5 pts
(c) For what x with $-2 \leq x \leq 2$ is $G(x)$ concave up? (If there are none, write "none".)

Solution: Since $G^{\prime \prime}(x)=f^{\prime}(x), G(x)$ will be concave up when $f(x)$ has positive slope. That is, when $-1<x<0$.

10 pts
5. (a) Let $H(x)=\int_{x^{2}}^{1+x^{3}} \frac{1-t}{1+t} d t$. Calculate $H^{\prime}(x)$.

Solution: Let $g(x)=\int_{0}^{x} \frac{1-t}{1+t} d t$, so $H(x)=g\left(1+x^{3}\right)-g\left(x^{2}\right)$. By the FTC, $g^{\prime}(x)=\frac{1-x}{1+x}$. Using the chain rule, we have

$$
H^{\prime}(x)=g^{\prime}\left(1+x^{3}\right) \cdot 3 x^{2}-g^{\prime}\left(x^{2}\right) \cdot 2 x=\frac{-x^{3} \cdot 3 x^{2}}{2+x^{3}}-\frac{1-x^{2}}{1+x^{2}} \cdot 2 x=-\frac{3 x^{5}}{2+x^{3}}-\frac{2 x-2 x^{3}}{1+x^{2}}
$$

(b) Find a function $g(x)$ so that $g^{\prime}(x)=x \cos \left(x^{2}\right)+e^{x}$ and $g(0)=3$.

Solution: We just want an antiderivative of $x \cos \left(x^{2}\right)+e^{x}$ with the proper constant. So

$$
g(x)=\int\left(x \cos \left(x^{2}\right)+e^{x}\right) d x=e^{x}+\int x \cos \left(x^{2}\right) d x=e^{x}+\frac{1}{2} \int \cos (u) d u=e^{x}+\frac{\sin \left(x^{2}\right)}{2}+C
$$

where we made the substitution $u=x^{2}$ (so $d u=2 d x$).
Since $g(0)=3$, we have $g(0)=e^{0}+\frac{\sin (0)}{2}+C=1+C$, so we must take $C=2$.

$$
g(x)=e^{x}+\frac{\sin \left(x^{2}\right)}{2}+2
$$

