MAT126, Paper Homework "Wax"

1. The average (mean) height of an American male is about $176 \mathrm{~cm}\left(5^{\prime} 9^{\prime \prime}\right)$, with a standard deviation of about 9 cm . Variations in height are well-modeled by a normal distribution, with the density function $\frac{1}{\sqrt{2 \sigma^{2} \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$ where μ is the mean and σ is the standard deviation. Write an integral which represents the probability of an American man being more than 200 cm (about $6^{\prime} 6 \frac{3}{4} "$) tall, and then use a computer program like Wolfram Alpha to calculate the probability to at least 3 significant figures. (Symbolab will give you an answer involving erf or erfc, but you need to evaluate this as a number; the calculator on Google knows those functions if you type them in the search bar.)
2. In addition to the star-shaped candles Zhulong makes for his candle store (as in problem 4 of the Fall 2016 second midterm), he also makes "sand-dollar candles". These have an inner area filled with colored beeswax, with regular wax on the outside. The beeswax area can be described as the interior of the polar curve $r=\sin (5 \theta)$ (r is measured in inches); the outside is a circle. A cross-section of the candle is shown
 at right.

- Find the area of the beeswax part of a candle cross-section. (Be careful about the range of θ.)
- Then, calculate how much beeswax is needed for a 5 inch tall candle (the candle is not tapered - all cross sections are the same).

