MAT126, Paper Homework "Civet"

1. A coffee grower has a number of civets he uses to make Kopi Luwak ("civet coffee" - if you don't know what this is, you don't want to). The amount of coffee beans they process decreases approximately linearly over the course of a day, as $c(t)=80-3 t \mathrm{~kg}$ per hour (there are a lot of civets). How many kilograms of coffee are produced in a day? (Hint: this is an integral, and there are 24 hours in a day.)
2. A lemur rancher needs to invest in some high-tech lemur grooming machines. She determines that the value of the machines will depreciate like $f(t)=V+e^{-a t^{2}}$ (for some constants a and $V)$, and the cost of keeping them in top running condition is $g(t)=B \ln (1+t)$, where t is the time that the machines have been running and B is another constant.
The cost of keeping the machines around (instead of replacing them with new ones) is given by

$$
C(t)=\frac{1}{t} \int_{0}^{t}(f(x)+g(x)) d x
$$

Show the critical points of $C(t)$ occur when $C(t)=f(t)+g(t)$ by calculating the derivative of $C(t)$ and setting it to zero.
(Such a critical point corresponds to a time when this cost is at a high or a low point.)

