Math 125 - Fall 2006 Practice Final Examination

1. Let f be a continuous function. Find

$$
\lim _{x \rightarrow \infty} f\left(\left(1-\frac{1}{x}\right)^{x}\right) .
$$

2. Consider the equation $x+e^{x}=0$. Is there a solution to this equation? Why or why not.
3. Find the derivative of the function

$$
e^{2 \tan (\sqrt{x})}
$$

4. Consider the function

$$
f(x)=\left\{\begin{array}{cc}
\frac{\sin x}{x} & x<0 \\
x^{3}+2 x+1 & x \geq 0
\end{array}\right.
$$

At which points is f continuous? At which points is it differentiable?
5. Let $f(x)=x \ln \left(1+e^{x^{2}}\right)$. Find $f^{\prime}(5)$.
6. Show that the curves

$$
e^{x^{2}-y^{2}} \cos (2 x y)=1 \quad \text { and } \quad e^{x^{2}-y^{2}} \sin (2 x y)=0
$$

meet orthogonally at the point $(\sqrt{\pi}, \sqrt{\pi})$.
7. Find the derivative of the function

$$
f(x)=\frac{(\sin x)^{2}(\tan x)^{2}}{\left(x^{2}+1\right)^{2}}
$$

8. Find an equation for the tangent line to the curve

$$
x^{2}+y^{2}=\left(2 x^{2}+2 y^{2}-x\right)^{2}=0
$$

through the point $(0,0.5)$.
9. If $f(x)=e^{x} /(x+1)^{3}$, find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.
10. Find the limit

$$
\lim _{x \rightarrow 1} \frac{x^{\pi}-1}{x^{e}-1}
$$

11. Show that $e^{x} \geq 1+x$ for $x \geq 0$. (Hint: Consider the function $f(x)=e^{x}-1-x$.)
12. A particle is moving along the curve $y=x^{2}$. As it passes through the point $(2,4)$, its y coordinate changes at a rate of $5 \mathrm{~m} / \mathrm{sec}$. What is the rate of change of the particle's distance to the origin at this instant?
13. Find the absolute maximum and absolute minimum values of the function

$$
f(x)=x^{2}-\ln x^{2}
$$

on the interval $[1 / 4,4]$.
14. Find

$$
\lim _{x \rightarrow \frac{\pi}{2}} \tan (7 x) \cos (4 x)
$$

15. A woman wants to get from a point A on the shore of a circular lake to a point C diametrically opposite A in the shortest possible time. She can walk at a speed of $4 \mathrm{mi} / \mathrm{hr}$ and row at a speed of $2 \mathrm{mi} / \mathrm{hr}$. How should she proceed?
16. Consider the function

$$
f(x)=x^{3}-7 x^{2}+9 x-\pi .
$$

(i) Find all the critical points of f, and the values of f at those points. State weather these points are local maxima, local minima or neither.
(ii) Find all the inflection of points of f.

