Solutions to Some problems of the type appropriate for MAT125 Final Part I

- 1. Compute the following limits. Please distinguish between " $\lim f(x) = \infty$ ", " $\lim f(x) = -\infty$ " and "limit does not exist even allowing for infinite values".
 - (a) $\lim_{x \to -1} x^2 + x 1$ Solution: -1 (b) $\lim_{x \to -3} \frac{x^2 + 2x - 3}{x + 3}$ Solution: -4 (c) $\lim_{t \to 0} \frac{\sqrt{2 - t} - \sqrt{2}}{t}$ Solution: $-\frac{1}{2\sqrt{2}}$ (d) $\lim_{x \to \infty} \cos(1/x)$ Solution: 1 (e) $\lim_{x \to \infty} \frac{x^3 + 2x + 1}{x^3 - 2x + 1}$ Solution: 1 (f) $\lim_{x \to \pi/2} \frac{\sin x}{2x - \pi}$ Solution: The limit does not exist. (g) $\lim_{x \to 0} \frac{\tan 3x}{2x}$ Solution: $\frac{3}{2}$
- 2. For what value of k is the function

$$f(x) = \begin{cases} 3kx^2 + 4x + 1 & x < 1\\ 2x^2 - 5kx - 1 & x \ge 1 \end{cases}$$

continuous?

Solution: $k = -\frac{1}{2}$

- 3. Compute the derivatives of the following functions
 - (a) $f(x) = x^3 12x^2 + x + 2\pi$ Solution: $f'(x) = 3x^2 - 24x + 1$ (b) $f(x) = (2x + 1) \sin(x)$ Solution: $f'(x) = 2 \sin(x) + (2x + 1) \cos(x)$ (c) $g(s) = \sqrt{1 + \ln(2s)}$ Solution: $g'(s) = \frac{1}{2s\sqrt{1 + \ln(2s)}}$ (d) $h(t) = \frac{1 + e^t}{1 - e^t}$ Solution: $h'(t) = \frac{e^t(1 - e^t) + e^t(1 + e^t)}{(1 - e^t)^2} = \frac{2e^t}{(1 - e^t)^2}$ (e) $f(x) = (2x + 2)^{10}$ Solution: $f'(x) = 20(2x + 2)^9$ (f) $a(x) = \arctan(x^2)$ Solution: $a'(x) = \frac{2x}{1 + x^4}$
- 4. On what interval(s) is $f(x) = xe^{-x^2}$ increasing?

Solution: f(x) is increasing for $-\frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}$.

5. For what value(s) of x does $f(x) = x^3 + 3x^2 - 72x - 9$ have an inflection point?

Solution: At x = -1.

- 6. Let $f(x) = -2x^3 + 6x^2 3$.
 - (a) Compute f', f''.

Solution: $f'(x) = -6x^2 + 12x = -6x(x-2)$ and f''(x) = -12x + 12.

(b) On which intervals is f(x) increasing/decreasing?

Solution: f(x) is increasing for 0 < x < 2 and decreasing for x < 0 and x > 2.

(c) On which intervals is f(x) concave up/down?

Solution: f(x) is concave up for x < 1 and concave down for x > 1.

(d) Find all critical points of f(x). Which of them are local maximums? local minimums? neither? Justify your answer.

Solution: The critical points are at x = 0 and x = 2. There is a local minimum at x = 0, since f''(0) > 0, and a local maximum at x = 2 since f''(2) < 0.

7. Stony Brook is going to build a new parking lot in the shape of a rectangle. It will be fenced in on three sides using 4000 feet of fence. The fourth side backs up to the woods and doesn't need a fence. What are the dimensions of the parking lot which has the maximum area?

Solution: The desired field should have two sides of 1000' and one side of 2000' in order to maximize the area.

8. A sphere is expanding at a rate of 48 cubic inches per second. At what rate is the radius growing when the radius is 1/2 inch?

Solution: The radius is growing at $48/\pi$ inches per second.

9. Use differentials to approximate $\sqrt{9.02}$.

Solution: $\sqrt{9.02} \approx 3 + .02/6 = 3 + 1/300$

10. Write the equation of the line tangent to the curve y = cos(2x) at $x = \pi/6$.

Solution:
$$y - \frac{1}{2} = -\sqrt{3}\left(x - \frac{\pi}{6}\right)$$

11. Find the value of $\frac{dy}{dx}$ when x = -2 and y = 1 if $\frac{4}{x^2} + y^4 = 2$.

Solution: $\frac{dy}{dx} = -\frac{1}{4}$