Solutions to

Some problems of the type appropriate for MAT125 Final Part I

1. Compute the following limits. Please distinguish between " $\lim f(x)=\infty$ ", " $\lim f(x)=-\infty$ " and "limit does not exist even allowing for infinite values".
(a) $\lim _{x \rightarrow-1} x^{2}+x-1$

Solution: -1
(b) $\lim _{x \rightarrow-3} \frac{x^{2}+2 x-3}{x+3}$

Solution: -4
(c) $\lim _{t \rightarrow 0} \frac{\sqrt{2-t}-\sqrt{2}}{t}$

Solution: $-\frac{1}{2 \sqrt{2}}$
(d) $\lim _{x \rightarrow \infty} \cos (1 / x)$

Solution: 1
(e) $\lim _{x \rightarrow \infty} \frac{x^{3}+2 x+1}{x^{3}-2 x+1}$

Solution: 1
(f) $\lim _{x \rightarrow \pi / 2} \frac{\sin x}{2 x-\pi}$

Solution: The limit does not exist.
(g) $\lim _{x \rightarrow 0} \frac{\tan 3 x}{2 x}$

Solution: $\frac{3}{2}$
2. For what value of k is the function

$$
f(x)= \begin{cases}3 k x^{2}+4 x+1 & x<1 \\ 2 x^{2}-5 k x-1 & x \geq 1\end{cases}
$$

continuous?

Solution: $k=-\frac{1}{2}$
3. Compute the derivatives of the following functions
(a) $f(x)=x^{3}-12 x^{2}+x+2 \pi$

Solution: $f^{\prime}(x)=3 x^{2}-24 x+1$
(b) $f(x)=(2 x+1) \sin (x)$

Solution: $f^{\prime}(x)=2 \sin (x)+(2 x+1) \cos (x)$
(c) $g(s)=\sqrt{1+\ln (2 s)}$

Solution: $g^{\prime}(s)=\frac{1}{2 s \sqrt{1+\ln (2 s)}}$
(d) $h(t)=\frac{1+e^{t}}{1-e^{t}}$

Solution: $h^{\prime}(t)=\frac{e^{t}\left(1-e^{t}\right)+e^{t}\left(1+e^{t}\right)}{\left(1-e^{t}\right)^{2}}=\frac{2 e^{t}}{\left(1-e^{t}\right)^{2}}$
(e) $f(x)=(2 x+2)^{10}$

Solution: $f^{\prime}(x)=20(2 x+2)^{9}$
(f) $a(x)=\arctan \left(x^{2}\right)$

Solution: $a^{\prime}(x)=\frac{2 x}{1+x^{4}}$
4. On what interval(s) is $f(x)=x e^{-x^{2}}$ increasing?

Solution: $f(x)$ is increasing for $-\frac{1}{\sqrt{2}}<x<\frac{1}{\sqrt{2}}$.
5. For what value(s) of x does $f(x)=x^{3}+3 x^{2}-72 x-9$ have an inflection point?

Solution: At $x=-1$.
6. Let $f(x)=-2 x^{3}+6 x^{2}-3$.
(a) Compute $f^{\prime}, f^{\prime \prime}$.

Solution: $f^{\prime}(x)=-6 x^{2}+12 x=-6 x(x-2)$ and $f^{\prime \prime}(x)=-12 x+12$.
(b) On which intervals is $f(x)$ increasing/decreasing?

Solution: $f(x)$ is increasing for $0<x<2$ and decreasing for $x<0$ and $x>2$.
(c) On which intervals is $f(x)$ concave up/down?

Solution: $f(x)$ is concave up for $x<1$ and concave down for $x>1$.
(d) Find all critical points of $f(x)$. Which of them are local maximums? local minimums? neither? Justify your answer.

Solution: The critical points are at $x=0$ and $x=2$. There is a local minimum at $x=0$, since $f^{\prime \prime}(0)>0$, and a local maximum at $x=2$ since $f^{\prime \prime}(2)<0$.
7. Stony Brook is going to build a new parking lot in the shape of a rectangle. It will be fenced in on three sides using 4000 feet of fence. The fourth side backs up to the woods and doesn't need a fence. What are the dimensions of the parking lot which has the maximum area?

Solution: The desired field should have two sides of 1000^{\prime} and one side of 2000^{\prime} in order to maximize the area.
8. A sphere is expanding at a rate of 48 cubic inches per second. At what rate is the radius growing when the radius is $1 / 2$ inch?

Solution: The radius is growing at $48 / \pi$ inches per second.
9. Use differentials to approximate $\sqrt{9.02}$.

Solution: $\sqrt{9.02} \approx 3+.02 / 6=3+1 / 300$
10. Write the equation of the line tangent to the curve $y=\cos (2 x)$ at $x=\pi / 6$.

Solution: $y-\frac{1}{2}=-\sqrt{3}\left(x-\frac{\pi}{6}\right)$
11. Find the value of $\frac{d y}{d x}$ when $x=-2$ and $y=1$ if $\frac{4}{x^{2}}+y^{4}=2$.

Solution: $\frac{d y}{d x}=-\frac{1}{4}$

