Your name: \qquad
TA's name:

Problem \#1: Use the definition of the derivative to find $f^{\prime}(x)$
if $f(x)=3 x^{2}-5 x+1$.

Problem \#2: Find $\frac{d y}{d x}$.
a) $y=\frac{x^{2}-3 x+5}{\ln x}$
b) $y=e^{\tan 2 x}$
c) $y=\sqrt{\frac{2 x+3}{2 x-3}}$
d) $y=\tan ^{-1}(\pi x)$

Problem \#3: Find the equation of the tangent line to $x^{2}-2 x y+y^{2}=0$ at the point $(1,1)$.

Problem \#4: Graph $y=x^{3}+3 x^{2}-24 x+12$. Be sure to label all extrema and points of inflection. You do not need to graph the x-intercepts.

Problem \#5: Sand is falling from a chute onto a pile that is shaped like a right circular cone at a rate of $48 \pi f t^{3} / \mathrm{min}$. If the radius of the pile is always 3 times the height, how fast is the height of the pile growing, when the height is 6 feet?

Problem \#6: An open-top box with a square base and rectangular sides is to have a volume of $9 f t^{3}$. The cost of the material to make the base is $\$ 2 / f t$ and the cost of the material to make the sides is $\$ 3 / f t$. Find the dimensions of the box that minimize the cost.

Problem \#7: Evaluate the following limits:
a) $\lim _{x \rightarrow 0} \frac{3 \sin 4 x}{2 \tan 5 x}$
b) $\lim _{x \rightarrow \infty} \frac{2 x^{3}+4 x^{2}-1}{6 x^{3}+x-8}$
c) $\lim _{x \rightarrow 6} \frac{3 x^{2}-12 x-36}{x^{2}-x-30}$
d) $\lim _{x \rightarrow 0} \frac{4 e^{-x}}{5 e^{x}+1}$
e) $\lim _{h \rightarrow 0} \frac{(9+h)^{2}-81}{h}$

