MATH 125

Solutions to Midterm 2 (Miracle Max)

1. For each of the functions $f(x)$ given below, find $\left.f^{\prime}(x)\right)$.

4 points
(a) $f(x)=\frac{1+2 x^{2}}{1+x^{3}}$

Solution: This is a straightforward quotient rule problem:

$$
f^{\prime}(x)=\frac{(4 x)\left(1+x^{3}\right)-\left(1+2 x^{2}\right)\left(3 x^{2}\right)}{\left(1+x^{3}\right)^{2}}=\frac{4 x-3 x^{2}-2 x^{4}}{\left(1+x^{3}\right)^{2}}
$$

The simplification is not required.
4 points
(b) $f(x)=\sin (4 x) \tan (x)$

Solution: Apply the product rule, with a chain rule for the $\sin (4 x)$ term to get

$$
f^{\prime}(x)=4 \cos (4 x) \tan (x)+\sin (4 x) \sec ^{2}(x)
$$

(c) $f(x)=\arctan (\sqrt{1+2 x})$

Solution: Applying the chain rule, we get

$$
\frac{1}{1+(\sqrt{1+2 x})^{2}} \cdot \frac{1}{2}(1+2 x)^{-1 / 2} \cdot(2)=\frac{1}{(2+2 x) \sqrt{1+2 x}}
$$

2. Compute each of the following derivatives as indicated:

4 points
(a) $\frac{d}{d u}\left[\frac{u^{3}}{5}+\frac{5}{u^{3}}\right]$

Solution: Write this as $\frac{1}{5} u^{3}+5 u^{-3}$ and apply the power rule to get

$$
\frac{3}{5} u^{2}-15 u^{-4}
$$

4 points
(b) $\frac{d}{d x}\left[e^{x}-\pi^{5}\right]$

Solution: Remember that π^{5} is a constant and so its derivative is zero. Thus, we have $\frac{d}{d x}\left[e^{x}-\pi^{5}\right]=e^{x}$.

4 points
(c) $\frac{d}{d w}[\sqrt{1+\sqrt{1+w}}]$

Solution: View this as $\frac{d}{d w}\left[\left(1+(1+w)^{1 / 2}\right)^{1 / 2}\right]$ and apply the chain rule:

$$
\frac{1}{2}\left(1+(1+w)^{1 / 2}\right)^{-\frac{1}{2}} \cdot \frac{1}{2}(1+w)^{-\frac{1}{2}}=\frac{1}{4 \sqrt{1+w} \sqrt{1+\sqrt{1+w}}}
$$

12 points 3. The set of points (x, y) which satisfy the relationship

$$
y^{2}\left(y^{2}-3\right)=x^{2}\left(x^{2}-4\right)
$$

lie on what is known as a "devil's curve", shown at right.
Write the equation of the line tangent to the given devil's curve at the point $(2, \sqrt{3})$.

Solution:

First, we use implicit differentiation to determine the slope of the tangent line. This will be slightly easier if we rewrite the equation as $y^{4}-3 y^{2}=x^{4}-4 x^{2}$ first. Differentiating with respect to x gives

$$
4 y^{3} y^{\prime}-3 \cdot 2 y \cdot y^{\prime}=4 x^{3}-4 \cdot 2 x \quad \text { and so } \quad y^{\prime}=\frac{x\left(2 x^{2}-4\right)}{y\left(2 y^{2}-3\right)}
$$

At our desired point, $x=2$ and $y=\sqrt{3}$, and so the slope is

$$
y^{\prime}=\frac{2 \cdot 4}{\sqrt{3} \cdot 3}=\frac{8}{3 \sqrt{3}} .
$$

This means the desired line is

$$
y-\sqrt{3}=\frac{8}{3 \sqrt{3}}(x-2)
$$

4. Let $f(x)=x \ln (4 x)$
(a) Calculate $f^{\prime}(x)$

Solution: Applying the product rule (and the chain rule) gives

$$
f^{\prime}(x)=\ln (4 x)+x \frac{1}{4 x} \cdot 4=\ln (4 x)+1
$$

(b) Calculate $f^{\prime \prime}(x)$

Solution: Taking the derivative of the above, we get $f^{\prime \prime}(x)=\frac{1}{x}$.
(c) For what values of x is $f(x)$ increasing?

Solution: As we all know, $f(x)$ is increasing when $f^{\prime}(x)>0$. Thus, using our answer from part (a) tells us that we need to know when

$$
\ln (4 x)+1>0 \quad \text { or, equivalently, } \quad \ln (4 x)>-1
$$

Exponentiating both sides gives $4 x>e^{-1}$, so we know that

$$
f(x) \text { is increasing for } x>\frac{1}{4 e} .
$$

(d) For what values of x is $f(x)$ concave down?

Solution: We need to determine when $f^{\prime \prime}(x)<0$. From part (b), this means

$$
\frac{1}{x}<0 \quad \text { that is, } \quad x<0
$$

However, remember that $\ln (2 x)$ is only defined for $x>0$. Thus $f(x)$ is concave up for all values of x in its domain. There are no values of x where $f(x)$ is concave down.

12 points 5. Give the x and y coordinates of the (absolute) maximum and minimum values of the function

$$
y=x^{4}-8 x^{2}+1 \quad \text { where } \quad-1 \leq x \leq 3
$$

Solution: First, we locate the critical points. Since the function is a polynomial, $f^{\prime}(x)$ is defined everywhere, so we only need concern ourselves with the x for which $f^{\prime}(x)=0$.

Since $f^{\prime}(x)=4 x^{3}-16 x=4 x\left(x^{2}-4\right)=4 x(x-2)(x+2)$, we have the critical points

$$
x=0 \quad x=2 \quad x=-2
$$

However, since we are concerned only with $-1 \leq x \leq 3$, we discard $x=-2$.
Now we evaluate f at each of the critical points, and the endpoints:

- $f(0)=1$.
- $f(2)=16-32+1=-15$.
- $f(-1)=1-8+1=-6$.
- $f(3)=81-72+1=10$.

The largest value of the above occurs at $x=3, y=10$. This is our absolute maximum.
The smallest occurs when $x=2$ and $y=-15$, which is our absolute minimum.

12 points 6. Calvin's family is visiting a winery in Cutchogue, and he wanders off into the fermenting room and dives into one of the large cylindrical ${ }^{\dagger}$ wine vats. The vat has a diameter of 6 feet and is 8 feet tall. The vinter hears the splash and quickly opens the taps to drain the vat, which drains at a rate of 5 cubic feet per minute. How quickly is the height of wine in the tank dropping when the wine is 5 feet deep?

[^0]

Solution: We have the formula for the volume of a cylinder $V=\pi r^{2} h$. In our case, $r=3$ since the diameter is 6 , so we have $V=9 \pi h$ We want to know $d h / d t$.
Since the vat is draining at a rate of 5 cubic feet per minute, we have $d V / d t=5$.
Using implicit differentiation, we get $\frac{d V}{d t}=9 \pi \frac{d h}{d t}$. So, we see that

$$
\frac{5}{9 \pi}=\frac{d h}{d t} .
$$

12 points 7. For each of the 4 functions graphed in the left column, find the corresponding derivative function among any of the 8 choices on the right (not just on the same row) and put its letter in the corresponding box. If the graph does not occur, use the letter \mathbf{X}.
D

A:

B:

G

C:

D:

E:

F:

G:

H:

[^0]: ${ }^{\dagger}$ The volume of a cylinder of height h and radius r is $\pi r^{2} h$ and its surface area (excluding top and bottom) is $2 \pi r h$. The density of the wine is about $.98 \mathrm{~kg} / \mathrm{L}$ or 61 pounds per cubic foot. 5 cubic feet is about 38 gallons or 142 liters. The wine is a rather sweet Riesling, but is probably less sweet after Calvin has been in it.

