MATH 125 Solutions to First Midterm

1. The graph of a function f is shown below.

(a) 3 points List all points $-6 \le x \le 6$ where f(x) is not continuous. If there are none, write "none".

Solution: f(x) is not continuous at x = -3, since the graph has a "jump" there. More precisely, $\lim_{x\to -3} f(x)$ does not exist, so there is no way it can equal f(-3). Similarly, f(x) is not continuous at x = -1 for the same reasons. Finally, it is not continuous at x = 2, since $\lim_{x\to 2} f(x) = -2$, but f(2) = 1. So, the answer is f(x) is not continuous at -3, -1, and 2.

- (b) 3 points What is $\lim_{x \to -1^+} f(x)$? If it does not exist, write DNE. Solution: $\lim_{x \to -1^+} f(x) = -3$: as x heads towards -1, the height of the graph gets close to -3. (The fact that f(-1) = -2 is irrelevant.)
- (c) 3 points Is f(x) continuous from the left at x = -3? Solution: Yes, since $\lim_{x \to -3^-} f(x) = 4 = f(-3)$.
- (d) 3 points What is $\lim_{x \to 4} (f(x/2) + f(x+1))$

Solution: We can compute the two parts of the sum separately. That is,

$$\lim_{x \to 4} (f(x/2) + f(x+1)) = \left(\lim_{x \to 4} f(x/2)\right) + \left(\lim_{x \to 4} f(x+1)\right)$$

For the first term, notice that as $x \to 4$, $x/2 \to 2$, so

$$\lim_{x \to 4} f(x/2) = \lim_{z \to 2} f(z) = -2.$$

For the second, we have $\lim_{x\to 4} f(x+1) = \lim_{w\to 5} f(w) = f(5) = -1$. So the answer is -2+(-1) = -3.

- 2. Let $h(x) = \sqrt{\frac{x+1}{x}}$.
 - (a) 3 points What is the domain of h(x)?

Solution: We must determine for which x the function makes sense. First, notice that we can rewrite h(x) as $h(x) = \sqrt{1 + \frac{1}{x}}$; this makes it clear that h(x) will be defined only when both $x \neq 0$ and when $1 + \frac{1}{x} \ge 0$. This second condition holds when $x \le -1$ or x > 0. This implies $x \neq 0$, so the domain of h(x) is $x \le -1$ or x > 0.

(b) 3 points Find two functions f and g so that $h = f \circ g$.

Solution: There are many correct choices here. The most obvious (to me) is

$$f(x) = \sqrt{x}$$
 and $g(x) = \frac{x+1}{x}$

(c) 4 points Write a formula for $h^{-1}(x)$.

Solution: We write y = h(x) and solve for x to get $h^{-1}(y)$. So:

x

$$y = \sqrt{\frac{x+1}{x}}$$
$$y^2 = \frac{x+1}{x}$$
$$xy^2 = x+1$$
$$xy^2 - x = 1$$
$$x(y^2 - 1) = 1$$
$$= \frac{1}{y^2 - 1} = h^{-1}(y)$$

Thus,

$$h^{-1}(x) = \frac{1}{x^2 - 1}.$$

3. (a) 3 points If $5e^{2x} = 10$, what is x?

Solution: First, divide both sides by 5 to get $e^{2x} = 2$. Then take the natural log of both sides, to get

$$2x = \ln 2$$
 so $x = \frac{\ln 2}{2}$

Page 3 of 6

(b) 3 points Solve $\ln(x^2) = 8$ for *x*. If there are no solutions, write "none".

Solution: Exponentiating both sides gives $x^2 = e^8$, so

$$x = \pm \sqrt{e^8}$$
 that is, $x = \pm e^4$.

(c) 3 points What is the inverse of the function $f(x) = x^2$, with x < 0? If the function has no inverse, write "no inverse".

Solution: Most people got this one wrong. Let me rephrase the question: Suppose $y = x^2$, and x is negative. Write x in terms of y.

Since $y = x^2$, we know $x = \pm \sqrt{y}$. Do we want the + or the -? Since x is negative, we obviously want the -. So the answer is

$$f^{-1}(x) = -\sqrt{x}.$$

4. A box without a top is to be made from a rectangular piece of cardboard which is 12 inches by 20 inches by cutting out four equal squares of side length *x* inches from each corner, and then folding up the flaps to form the sides of the box (see figure).

(a) 6 points Express the volume of the box V as a function of x.

Solution: The volume of the box is given by V = (length)(width)(height).

The height of the box will be *x*, since that is how long the flap we fold up is.

The width of the box is 20 - 2x, because we started with a piece of cardboard 20" wide, and cut x" off either end.

Similarly, the length will be 12 - 2x.

Multiplying them all together gives

$$V(x) = x(20 - 2x)(12 - 2x)$$

(b) **3** points What is the domain of the function V(x)?

Solution: Remember, the domain is the values of x that are valid. We can't cut less than nothing off the piece of cardboard, so $x \ge 0$. Similarly, we can't cut more than half the smaller dimension, so $x \le 6$. This means the domain is

$$0 \le x \le 6.$$

5. 9 points The graphs of several functions f(x) are shown below. On the same set of axes, sketch the graph of the function g(x) as indicated.

Solution: For the first graph, remember that if y = f(x), then $f^{-1}(y) = x$. So the graph of $f^{-1}(x)$ is obtained from that of f(x) by exchanging the roles of x and y. That is, we reflect the graph through the line y = x.

For the center graph, we want to add x to f(x). This means that when x < 0, the graph will be shifted down, and when x > 0, the graph shifts up. For example, at the left edge, the answer should be at f(-5) - 5, which is just about -5. In the middle, the answer is f(0) + 0 = f(0), and at the right edge, it is f(5) + 5.

The last graph is -f(x/2), which means we first stretch the graph horizontally by a factor of 2 to get f(x/2), then flip through the *x*-axis. If you are confused, think what value should go over, say, x = 4: we want -f(4/2) which is -f(2). Since $f(2) \approx 3$, the solution should go near (4, -3). If you do this for several other points, you'll see why the solution is what it is.

- 6. Compute each of the following limits. If the limit is undefined, please distinguish between $+\infty$, $-\infty$, and a limit which does not exist (DNE).
 - (a) 3 points $\lim_{x \to 2} xe^{x-2}$

Solution: Since xe^{x-2} is continuous for all x, we just plug in to get

$$\lim_{x \to 2} x e^{x-2} = 2e^0 = 2 \cdot 1 = 2.$$

Page 5 of 6

(b) <u>3 points</u> $\lim_{h \to 0} \frac{(3+h)^2 - 9}{h}$

Solution: Attempting to plug in h = 0 gives us the indeterminate form $\frac{0}{0}$, so we need to do a little algebra:

$$\lim_{h \to 0} \frac{(3+h)^2 - 9}{h} = \lim_{h \to 0} \frac{(9+6h+h^2) - 9}{h} = \lim_{h \to 0} \frac{6h+h^2}{h} = \lim_{h \to 0} 6 + h = 6.$$

(c) 3 points $\lim_{x \to +\infty} \frac{3x^2 - 22x + 7}{x^2 - 49}$

Solution: Since $x \to +\infty$, we divide top and bottom by the highest power of x to get

$$\lim_{x \to +\infty} \frac{\frac{3x^2}{x^2} - \frac{22x}{x^2} + \frac{7}{x^2}}{\frac{x^2}{x^2} - \frac{49}{x^2}} = \lim_{x \to +\infty} \frac{3 - \frac{22}{x} + \frac{7}{x^2}}{1 - \frac{49}{x^2}} = \frac{3 - 0 + 0}{1 - 0} = 3$$

Of course, this can also be done more efficiently by neglecting all but the fastestgrowing terms on the top and bottom (this is really the same thing):

$$\lim_{x \to +\infty} \frac{3x^2 - 22x + 7}{x^2 - 49} = \lim_{x \to +\infty} \frac{3x^2}{x^2} = \lim_{x \to +\infty} \frac{3}{1} = 3$$

(d) **3 points** $\lim_{x \to +\infty} \cos\left(\frac{\pi}{x}\right)$

Solution: Since the cosine is a continuous function, we have

$$\lim_{x \to +\infty} \cos\left(\frac{\pi}{x}\right) = \cos\left(\lim_{x \to +\infty} \frac{\pi}{x}\right) = \cos(0) = 1.$$

(e) 3 points $\lim_{x \to 4} \frac{2 + \sqrt{x}}{2 - \sqrt{x}}$

Solution: As $x \to 4$, the function tends to $\frac{4}{0}$. No amount of algebra will change the fact that we are dividing a nonzero number by something tending to zero, so the limit will either be $+\infty$, $-\infty$, or DNE. We need to determine which it is.

Notice that if x < 4, the denominator is positive, so $\lim_{x \to 4^-} \frac{2 + \sqrt{x}}{2 - \sqrt{x}} = -\infty$.

On the other hand x > 4, the denominator is negative, so $\lim_{x \to 4^+} \frac{2 + \sqrt{x}}{2 - \sqrt{x}} = +\infty$. Since the one-sided limits are different, the two-sided limit does not exist (DNE).

Page 6 of 6

7. Let
$$q(x) = \begin{cases} \frac{x-1}{x+3} & x < 1\\ x+3 & x \ge 1 \end{cases}$$

(a) 3 points Calculate $\lim_{x\to 1^-} q(x)$. If the limit does not exist, write DNE.

Solution: Since we want $x \to 1^-$, we are only considering x < 1, so $q(x) = \frac{x-1}{x+3}$. Thus we have $\lim_{x \to 1^-} q(x) = \lim_{x \to 1^-} \frac{x-1}{x+3} = \frac{1-1}{1+3} = 0.$

(b) 3 points Calculate $\lim_{x \to 1^+} q(x)$. If the limit does not exist, write DNE.

Solution: This time we are considering x > 1, so we have

$$\lim_{x \to 1^+} q(x) = \lim_{x \to 1^+} x + 3 = 1 + 3 = 4.$$

(c) 3 points For what x is q(x) continuous?

Solution: From the previous two parts, we know q(x) can't be continuous at x = 1. But notice that when x < 1, $q(x) = \frac{x-1}{x+3}$, which is not defined when x = -3.

Everywhere else, q(x) is continuous and well-defined, so q(x) is continuous for all x except x = 1 and x = -3.

8. 8 points The equation $1 + \sin\left(\frac{\pi}{4}x^2\right) - 3x = 0$ has exactly one solution for $0 \le x \le 5$. Between what two (closest) whole numbers does the solution lie? You must **fully** justify your answer to receive credit.

Solution: Since $f(x) = 1 + \sin(\frac{\pi}{4}x^2) - 3x$ is a continuous function, we can apply the Intermediate Value Theorem. We want to find two integers x_1 and x_2 that differ by one and so that $f(x_1) > 0$ but $f(x_2) < 0$. So we just try some.

$$f(0) = 1 + \sin(0) - 3 \cdot 0 = 1 > 0.$$

$$f(1) = 1 + \sin\left(\frac{\pi}{4}\right) - 3 \cdot 1 = -2 + \frac{\sqrt{2}}{2} < 0.$$

Since we just found that f(0) > 0 and f(1) < 0, we can stop. The solution must lie between 0 and 1.