## MATH 125

## Solutions to First Midterm

1. Compute each of the following limits. If the limit is not a finite number, please distinguish between $+\infty,-\infty$, and a limit which does not exist (DNE). Justify your answer, at least a little bit.
(a) 3 points $\lim _{x \rightarrow 0} \frac{\sin x}{\tan x}$

Solution:

$$
\lim _{x \rightarrow 0} \frac{\sin x}{\tan x}=\lim _{x \rightarrow 0} \frac{\sin x}{\frac{\sin x}{\cos x}}=\lim _{x \rightarrow 0} \cos x=\cos (0)=1
$$

(b) 3 points $\lim _{x \rightarrow+\infty} \frac{5 x^{2}-4 x-1}{x^{2}-1}$

Solution:

$$
\lim _{x \rightarrow+\infty} \frac{5 x^{2}-4 x-1}{x^{2}-1}=\lim _{x \rightarrow+\infty} \frac{5 x^{2}}{x^{2}}=\lim _{x \rightarrow+\infty} 5=5
$$

(c)


Solution:

$$
\begin{aligned}
\lim _{x \rightarrow+\infty} \sqrt{4 x^{2}+x}-2 x & =\lim _{x \rightarrow+\infty}\left(\sqrt{4 x^{2}+x}-2 x\right) \frac{\sqrt{4 x^{2}+x}+2 x}{\sqrt{4 x^{2}+x}+2 x} \\
& =\lim _{x \rightarrow+\infty} \frac{4 x^{2}+x-4 x^{2}}{\sqrt{4 x^{2}+x}+2 x} \\
& =\lim _{x \rightarrow+\infty} \frac{x}{\sqrt{4 x^{2}+x}+2 x} \\
& =\lim _{x \rightarrow+\infty} \frac{\frac{1}{x}}{\frac{1}{x}} \cdot \frac{x}{\sqrt{4 x^{2}+x}+2 x} \\
& =\lim _{x \rightarrow+\infty} \frac{1}{\sqrt{4+\frac{1}{x}}+2}=\frac{1}{\sqrt{4}+2}=\frac{1}{4}
\end{aligned}
$$

(d) 3 points $\lim _{x \rightarrow 0^{-}} \frac{1}{x^{5}}$

Solution: We are only considering $x<0$, so $1 / x^{5}$ is always negative. As $x$ approaches 0 from the left, $1 / x^{5}$ gets larger and larger in absolute value. Hence $\lim _{x \rightarrow 0^{-}} \frac{1}{x^{5}}=-\infty$
(e) 3 points $\lim _{x \rightarrow 0} \frac{(2+x)^{2}-4}{x}$

## Solution:

$$
\lim _{x \rightarrow 0} \frac{(2+x)^{2}-4}{x}=\lim _{x \rightarrow 0} \frac{\left(4+4 x+x^{2}\right)-4}{x}=\lim _{x \rightarrow 0} \frac{4 x+x^{2}}{x}=\lim _{x \rightarrow 0} 4+x=4
$$

You could also do this by noticing that this is the definition of $f^{\prime}(2)$ where $f(x)=x^{2}$ and use the power rule to see that $f^{\prime}(x)=2 x$, so $f^{\prime}(2)=4$, but I doubt anyone did that.
2. 6 points Let

$$
f(x)= \begin{cases}3 x^{2} & \text { if } x<-1 \\ 3 \tan \left(\frac{\pi}{4} x\right) & \text { if }-1 \leq x \leq 1 \\ 3 x^{3} & \text { if } x>1\end{cases}
$$

For which values of $x$ is $f(x)$ continuous? Justify your answer.
Solution: At right is the graph of $f(x)$.
Since $3 x^{2}, 3 \tan \left(\frac{\pi}{4} x\right)$, and $3 x^{3}$ are all continuous on their respective domains, we only need to check whether they match up at -1 and 1 . That is, we need to see whether

$$
\lim _{x \rightarrow-1^{-}} f(x)=\lim _{x \rightarrow-1^{+}} f(x) \quad \text { or } \quad \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)
$$

At $x=-1$, we see that $3(-1)^{2}=3$ and $3 \tan \left(-\frac{\pi}{4}\right)=-3$, so $f$ is not continuous at -1 . But at $x=+1$, we have $3(1)^{3}=3$ and $3 \tan \left(\frac{\pi}{4}\right)=3$, and so $f$ is continuous at 1 .
Thus, $f$ is continuous for all real numbers except $x=-1$.

3. Let $f(x)=2 x^{3}-4 x+4$.
(a) 5 points Find $f^{\prime}(1)$.

Solution: Using the power rule, $f^{\prime}(x)=6 x^{2}-4$, so $f^{\prime}(1)=2$.
(b) 5 points Write the equation of the line tangent to $f(x)$ at the point $P=(1,2)$.

Solution: We just neet the equation of the line of slope 2 passing through the point $(1,2)$. This is

$$
y-2=2(x-1) \quad \text { or } \quad y=2 x
$$

4. 6 points Write a limit that represents the slope of the graph

$$
y= \begin{cases}8+x \ln |x| & x \neq 0 \\ 8 & x=0\end{cases}
$$

at $x=0$. You do not need to evaluate the limit.

Solution: To do this, we need to remember the definition of the derivative, which is

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} .
$$

In the current case, $a=0$, so $f(a+h)=f(h)$. Notice that $f(0)=8$, so we have

$$
\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{(8+h \ln |h|)-8}{h}
$$

This simplifies to

$$
\lim _{h \rightarrow 0} \frac{h \ln |h|}{h}=\lim _{h \rightarrow 0} \ln |h|=-\infty,
$$

although it wasn't required for you to do this.
5. At right is the graph of the derivative $f^{\prime}$ of a function.
(a) 4 points List all values of $x$ with $-3 \leq x \leq 4$ where $f(x)$ has a local maximum.

Solution: A local maximum for $f(x)$ will occur where $f^{\prime}(x)$ changes from positive to negative. This happens at $x=0$.
(b) 4 points At $x=-1$, is $f(x)$ concave up, concave
 down, or neither?

Solution: We know that a function is concave up when its second derivative is positive, and concave down when $f^{\prime \prime}$ is negative. The graph shows $f^{\prime}(x)$, which is decreasing near $x=-1$. That means the derivative of $f^{\prime}(x)$ is negative near $x=-1$, so $f^{\prime \prime}(-1)<0$. Hence $f(x)$ is concave down at $x=-1$.
6. 16 points For each of the 4 functions graphed in the left column, find the corresponding derivative function among any of the 8 choices on the right (not just on the same row) and put its letter in the corresponding box.

C:

B:

D:


E:

F:


G:

H:

7. Let $f(x)=\frac{4-x^{2}}{(3+x)^{2}}$.
(a) 4 points Identify the horizontal asymptotes of $f(x)$. If there are none, write "NONE".

Solution: To find the horizontal asymptotes, we calculate the limit as $x \rightarrow \infty$. Thus,

$$
\lim _{x \rightarrow \infty} \frac{4-x^{2}}{(3+x)^{2}}=\lim _{x \rightarrow \infty} \frac{4-x^{2}}{9+6 x+x^{2}}=\lim _{x \rightarrow \infty} \frac{-x^{2}}{x^{2}}=-1
$$

So there is a horizontal asymptote at $y=-1$.
(b) 4 points Identify the vertical asymptotes of $f(x)$. If there are none, write "NONE".

Solution: There will be a vertical asymptote whenever there is a finite value $x=a$ such that $f(x) \rightarrow \pm \infty$ as $x \rightarrow a$ (this could be a one-sided limit). This happens when the denominator is zero but the numerator is non-zero.
For this function, the denominator is zero when $x=-3$, and so we have a vertical asymptote at $x=-3$, that is,

$$
\lim _{x \rightarrow-3} \frac{4-x^{2}}{(3+x)^{2}}=-\infty
$$

8. 8 points An exponential function of the form $y=C a^{x}$ passes through the points $(1,6)$ and $(3,24)$. Find $C$ and $a$.

Solution: Since the function passes through $(1,6)$ and $(3,24)$, we know that

$$
6=C a^{1} \quad \text { and } \quad 24=C a^{3}
$$

From the first equation, we know that $C=6 / a$, and putting this into the second equation, we have $24=(6 / a) a^{3}$, or $4=a^{2}$. Thus $a=2$. (We must have $a>0$, or $a^{x}$ doesn't make sense.) Since $a=2$, we have $C=6 / 2=3$.
Thus, the function is $y=3 \cdot 2^{x}$

