Practice Final Exam Solutions MAT 125

May 8, 2006

1. Compute the following limits. Please distinguish between "lim $f(x)=\infty$ ", "lim $f(x)=$ $-\infty$ " and "limit does not exist even allowing for infinite values".
(a) $\lim _{x \rightarrow-1} x^{2}+x-1$

Solution: Since any polynomial is continuous, $\lim _{x \rightarrow-1} x^{2}+x-1=(-1)^{2}+(-1)-$ $1=1-1-1=-1$.
(b) $\lim _{x \rightarrow-3} \frac{x^{2}+2 x-3}{x+3}$

Solution: We can't just substitute $x=-3$, as it will give denominator zero. The numerator also becomes zero. However, factoring the numerator works:

$$
\lim _{x \rightarrow-3} \frac{x^{2}+2 x-3}{x+3}=\lim _{x \rightarrow-3} \frac{(x-1)(x+3)}{x+3}=\lim _{x \rightarrow-3}(x-1)=-4
$$

Note: this problem can also be solved by using L'Hospital's rule.
(c) $\lim _{t \rightarrow 0} \frac{\sqrt{2-t}-\sqrt{2}}{t}$

Solution: Again, substituting $t=0$ gives meaningless expression $0 / 0$; however, multiplying the numerator by the conjugate expression $\sqrt{2-t}+\sqrt{2}$ works:

$$
\begin{aligned}
\lim _{t \rightarrow 0} & \frac{\sqrt{2-t}-\sqrt{2}}{t}=\lim _{t \rightarrow 0} \frac{(\sqrt{2-t}-\sqrt{2})(\sqrt{2-t}+\sqrt{2})}{t(\sqrt{2-t}+\sqrt{2})} \\
& =\lim _{t \rightarrow 0} \frac{(2-t)-2}{t(\sqrt{2-t}+\sqrt{2})}=\lim _{t \rightarrow 0} \frac{-t}{t(\sqrt{2-t}+\sqrt{2})} \\
& =\lim _{t \rightarrow 0} \frac{-1}{(\sqrt{2-t}+\sqrt{2})}=\frac{-1}{2 \sqrt{2}}
\end{aligned}
$$

Note: this problem can also be solved by using L'Hospital's rule.
(d) $\lim _{x \rightarrow 0} x \sin \pi\left(x^{2}+\frac{1}{x^{2}}\right)$

Solution: Since $-1<\sin \pi\left(x^{2}+\frac{1}{x^{2}}\right)<1$, we see that

$$
-|x| \leq x \sin \pi\left(x^{2}+\frac{1}{x^{2}}\right) \leq|x|
$$

Since $\lim _{x \rightarrow 0}|x|=\lim _{x \rightarrow 0}-|x|=0$, by Squeeze Theorem, $\lim _{x \rightarrow 0} x \sin \pi\left(x^{2}+\frac{1}{x^{2}}\right)=$ 0
(e) $\lim _{x \rightarrow \infty} \frac{x^{3}+2 x+1}{x^{3}-2 x+1}$

Solution:

$$
\lim _{x \rightarrow \infty} \frac{x^{3}+2 x+1}{x^{3}-2 x+1}=\lim _{x \rightarrow \infty} \frac{1+\frac{2}{x^{2}}+\frac{1}{x^{3}}}{1-\frac{2}{x^{2}}+\frac{1}{x^{3}}}=\frac{1}{1}=1
$$

(f) $\lim _{x \rightarrow \pi / 2} \frac{\cos x}{2 x-\pi}$

Solution: Direct substituiton $x=\pi / 2$ gives $\frac{0}{0}$ which is meaningless. Thus, we can use L'Hospital's rule, which gives

$$
\lim _{x \rightarrow \pi / 2} \frac{\cos x}{2 x-\pi}=\lim _{x \rightarrow \pi / 2} \frac{-\sin x}{2}=\frac{-1}{2}
$$

2. Compute the derivatives of the following functions
(a) $f(x)=x^{3}-12 x^{2}+x+2 \pi$

Solution: $f^{\prime}(x)=3 x^{2}-24 x+1$
(b) $f(x)=(2 x+1) \sin (x)$

Solution: $f^{\prime}(x)=(2 x+1)^{\prime} \sin (x)+(2 x+1)(\sin (x))^{\prime}=2 \sin (x)+(2 x+1) \cos (x)$
(c) $g(s)=\sqrt{1+e^{2 s}}$

Solution: By chain rule, using $u=1+e^{2 s}$:

$$
\frac{d g}{d s}=\frac{d g}{d u} \frac{d u}{d s}=\frac{d(\sqrt{u})}{d u} \frac{d\left(1+e^{2 s}\right)}{d s}=\frac{1}{2 \sqrt{u}} 2 e^{2 s}=\frac{e^{2 s}}{\sqrt{1+e^{2 s}}}
$$

(d) $h(t)=\frac{1+e^{t}}{1-e^{t}}$

Solution: By quotient rule,

$$
\begin{aligned}
h^{\prime}(t) & =\frac{\left(1+e^{t}\right)^{\prime}\left(1-e^{t}\right)-\left(1+e^{t}\right)\left(1-e^{t}\right)^{\prime}}{\left(1-e^{t}\right)^{2}}=\frac{e^{t}\left(1-e^{t}\right)-\left(1+e^{t}\right)\left(-e^{t}\right)}{\left(1-e^{t}\right)^{2}} \\
& =\frac{e^{t}-\left(e^{t}\right)^{2}+e^{t}+\left(e^{t}\right)^{2}}{\left(1-e^{t}\right)^{2}}=\frac{2 e^{t}}{\left(1-e^{t}\right)^{2}}
\end{aligned}
$$

(e) $f(x)=(2 x+2)^{10}$

Solution: By chain rule,

$$
f^{\prime}(x)=10(2 x+2)^{2}(2 x+2)^{\prime}=20(2 x+2)^{9}
$$

(f) $g(x)=x^{(\sin x)}$

Solution: We will use logarithmic derivative:

$$
\begin{aligned}
& (\ln g(x))^{\prime}=\left(\ln x^{(\sin x)}\right)^{\prime}=((\sin x) \ln x)^{\prime}=(\sin x)^{\prime} \ln x+(\sin x)(\ln x)^{\prime} \\
& \quad=(\cos x) \ln x+(\sin x) \frac{1}{x}
\end{aligned}
$$

Thus, using $(\ln g)^{\prime}=\frac{g^{\prime}}{g}$, we get

$$
g^{\prime}(x)=g(x)(\ln g(x))^{\prime}=x^{(\sin x)}\left[(\cos x) \ln x+\frac{\sin x}{x}\right]
$$

3. Let $f(x)=x e^{\left(-x^{2}\right)}$.
(a) Find asymptotes of $f(x)$ (hint: $f(x)=\frac{x}{e^{\left(x^{2}\right)}}$)

Solution: This function is continuous everywhere, so there are no vertical asymptotes. To find horizontal asymptotes, we need to compute $\lim _{x \rightarrow \pm \infty} f(x)$. Writing $f(x)=\frac{x}{e\left(x^{2}\right)}$, we see that as $x \rightarrow \infty$, both numerator and denominator have limit ∞. Thus, we can not use quotient rule (it would give $\frac{\infty}{\infty}$, which is meaningless); however, we can use L'Hospital's rule:

$$
\lim _{x \rightarrow \infty} \frac{x}{e^{\left(x^{2}\right)}}=\lim _{x \rightarrow \infty} \frac{1}{2 x e^{\left(x^{2}\right)}}=0
$$

since $\lim _{x \rightarrow \infty} 2 x e^{\left(x^{2}\right)}=\infty$. Similar computation gives

$$
\lim _{x \rightarrow-\infty} f(x)=0
$$

Thus, the horizontal asymptote is $y=0$.
(b) Compute the derivative of $f(x)$

Solution: $f^{\prime}(x)=(x)^{\prime} e^{\left(-x^{2}\right)}+x\left(e^{\left(-x^{2}\right)}\right)^{\prime}=e^{\left(-x^{2}\right)}+x\left(-2 x e^{\left(-x^{2}\right)}\right)=\left(1-2 x^{2}\right) e^{\left(-x^{2}\right)}$
(c) On which intervals is $f(x)$ increasing? decreasing?

Solution: $f(x)$ is increasing when $f^{\prime}(x)>0$, i.e. $\left(1-2 x^{2}\right) e^{\left(-x^{2}\right)}>0$. Since $e^{\left(-x^{2}\right)}>0$, it is equivalent to $1-2 x^{2}>0$, i.e. $1<2 x^{2}$, or $x^{2}<1 / 2$. Solutions of this last inequality are $-\frac{1}{\sqrt{2}}<x<\frac{1}{\sqrt{2}}$. So $f(x)$ is increasing on $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$.
Same argument shows that $f(x)$ decreasing on $\left(-\infty,-\frac{1}{\sqrt{2}}\right)$ and on $\left(\frac{1}{\sqrt{2}}, \infty\right)$
(d) Sketch a graph of $f(x)$ using the results of the previous parts and the fact that $f(0)=0$.

4. Let $f(x)=\frac{1}{\sqrt{1+x}}$. Write the linear approximation for $f(x)$ near $x=0$ and use it to estimate $f(0.1)$.
Solution: General formula is $f(x) \approx f(a)+f^{\prime}(a)(x-a)$. In this case, $a=0, f(a)=$ $\frac{1}{\sqrt{1+0}}=1$. To find $f^{\prime}(0)$, compute $f^{\prime}(x)$ and then substitute $x=0$:

$$
\begin{aligned}
& f(x)=(1+x)^{-1 / 2} \\
& f^{\prime}(x)=-\frac{1}{2}(1+x)^{-3 / 2}
\end{aligned}
$$

Thus, $f^{\prime}(0)=-\frac{1}{2}$. Therefore,

$$
f(x) \approx 1-\frac{1}{2}(x-0)=1-\frac{x}{2}
$$

Substituting $x=0.1$, we get

$$
f(0.1) \approx 1-\frac{0.1}{2}=1-0.05=0.95
$$

5. Let $f(x)=-2 x^{3}+6 x^{2}-3$.
(a) Compute $f^{\prime}, f^{\prime \prime}$.

Solution:

$$
\begin{aligned}
& f^{\prime}(x)=-6 x^{2}+12 x \\
& f^{\prime \prime}(x)=-12 x+12
\end{aligned}
$$

(b) On which intervals is $f(x)$ increasing/decreasing?

Solution: $f(x)$ is increasing when $f^{\prime}(x)>0$:

$$
\begin{aligned}
& -6 x^{2}+12 x>0 \\
& -6 x(x-2)>0
\end{aligned}
$$

Since the graph of $-6 x^{2}+12 x$ is a parabola witht he branches going down, this expression is positive between the roots, i.e. for $0<x<2$. Thus, $f^{\prime}(x)>0$ on the interval $(0,2)$, and $f(x)$ is increasing on (0,2).
Similar argument shows that $f^{\prime}(x)<0$ on $(-\infty, 0)$ and on $(2, \infty)$; thus, on these intervals $f(x)$ is decreasing.
(c) On which intervals is $f(x)$ concave up/down?

Solution: $f(x)$ is concave up when $f^{\prime \prime}(x)>0$, i.e. $-12 x+12>0$, or $1-x>0$, $x<1$. Threfore, $f(x)$ is concave up on $(-\infty, 1)$ and concave down on $(1, \infty)$.
(d) Find all critical points of $f(x)$. Which of them are local maximums? local minimums? neither? Justify your answer.
Solution: Critical points are where $f^{\prime \prime}(x)=0$, i.e.

$$
\begin{aligned}
& -6 x^{2}+12 x=0 \\
& x^{2}-2 x=0 \\
& x(x-2)=0
\end{aligned}
$$

So the critical points are $x=0, x=2$.
Since $f(x)$ is decreasing for $x<0$ and increasing for $0<x<2$, by first derivative test, $x=0$ is a local minimum. Similarly, since $f(x)$ is increasing for $0<x<2$ and decreasing for $x>2, x=2$ is a local maximum.
6. It is known that the polynomial $f(x)=x^{3}-x-1$ has a unique real root. Between which two whole numbers does this root lie? Justify your answer.
Solution: Computing the values of $f(x)$ for several whole values of x, we get
$f(-2)=-7$
$f(-1)=-1$
$f(0)=-1$

$$
\begin{aligned}
& f(1)=-1 \\
& f(2)=5
\end{aligned}
$$

Thus, we see that $f(x)$ changes sign on the intrerval [1,2]. SInce any polynomial is continuous, by Intermediate Value Theorem $f(x)$ must have a root somewhere on this interval. Thus, the root is between 1 and 2 .
7. It is known that for a rectangular beam of fixed length, its strength is proportional to $w \cdot h^{2}$, where w is the width and h is the height of the beam's cross-section.
Find the dimensions of the strongest beam that can be cut from a 12 " diameter log (thus, the cross-section must be a rectangle with diagonal 12 ").

Solution: The dimensions of the beam are width w and height h. They must satisfy the conditions $h \geq 0, w \geq 0$. In addition, since the diagonal of the cross-section must be 12 inches, Pythagorean theorem gives $h^{2}+w^{2}=12^{2}=144$. Thus, we need to find the maximum of the function $w h^{2}$, where h, w are real numbers subject to the above conditions.
Let us rewrite everything in terms of w. Then $h=\sqrt{144-w^{2}}$; restrictions $h \geq 0$, $w \geq 0$ give $0 \leq w \leq 12$, and the strength is given by

$$
s(w)=w\left(\sqrt{144-w^{2}}\right)^{2}=w\left(144-w^{2}\right)=-w^{3}+144 w
$$

So we need to find the maximum of this function on the interval $[0,12]$.
$f^{\prime}(w)=-3 w^{2}+144$, so critical points are when

$$
\begin{aligned}
& -3 w^{2}+144=0 \\
& 144=3 w^{2} \\
& w^{2}=48 \\
& w= \pm \sqrt{48}= \pm \sqrt{16 \cdot 3}= \pm 4 \sqrt{3}
\end{aligned}
$$

Thus, on $[0,12]$ there is a unique critical point, $w=4 \sqrt{3}$.
To find the maximum, we compare the values of the function at the critical point and the endpoints:

$$
\begin{aligned}
& f(0)=0\left(144-0^{2}\right)=0 \\
& f(12)=12\left(144-12^{2}\right)=0 \\
& f(4 \sqrt{3})=4 \sqrt{3}\left(144-(4 \sqrt{3})^{2}\right)=4 \sqrt{3}(144-48)=4 \sqrt{3} \cdot 96
\end{aligned}
$$

Clearly, the largest value is $f(4 \sqrt{3})$; thus, this is the maximum. So the best width is $4 \sqrt{3}$, and the corresponding height is $h=\sqrt{144-w^{2}}=\sqrt{96}=4 \sqrt{6}$.
8. The curve defined by the equation

$$
y^{2}\left(y^{2}-4\right)=x^{2}\left(x^{2}-5\right)
$$

is known as the "devil's curve". Use implicit differentiation to find the equation of the tangent line to the curve at the point $(0 ;-2)$.
Solution: Rewriting the equation in the form

$$
y^{4}-4 y^{2}=x^{4}-5 x^{2}
$$

and taking derivative of both sides, we get $y^{\prime}\left(4 y^{3}-8 y\right)=4 x^{3}-10 x$, so

$$
y^{\prime}=\frac{4 x^{3}-10 x}{4 y^{3}-8 y}
$$

Subsituting $x=0, y=-2$, we get $y^{\prime}=0$, so the tangent line is horizaontal and the equation of the tangent line is $y=-2$.

