
Practice Final Exam Solutions
MAT 125

May 8, 2006

1. Compute the following limits. Please distinguish between “lim f(x) = ∞”, “lim f(x) =
−∞” and “limit does not exist even allowing for infinite values”.

(a) lim
x→−1

x2 + x− 1

Solution: Since any polynomial is continuous, limx→−1 x2+x−1 = (−1)2+(−1)−
1 = 1− 1− 1 = −1.

(b) lim
x→−3

x2 + 2x− 3

x + 3
Solution: We can’t just substitute x = −3, as it will give denominator zero. The
numerator also becomes zero. However, factoring the numerator works:

lim
x→−3

x2 + 2x− 3

x + 3
= lim

x→−3

(x− 1)(x + 3)

x + 3
= lim

x→−3
(x− 1) = −4

Note: this problem can also be solved by using L’Hospital’s rule.

(c) lim
t→0

√
2− t−√2

t
Solution: Again, substituting t = 0 gives meaningless expression 0/0; however,
multiplying the numerator by the conjugate expression

√
2− t +

√
2 works:

lim
t→0

√
2− t−√2

t
= lim

t→0

(
√

2− t−√2)(
√

2− t +
√

2)

t(
√

2− t +
√

2)

= lim
t→0

(2− t)− 2

t(
√

2− t +
√

2)
= lim

t→0

−t

t(
√

2− t +
√

2)

= lim
t→0

−1

(
√

2− t +
√

2)
=

−1

2
√

2

Note: this problem can also be solved by using L’Hospital’s rule.

(d) lim
x→0

x sin π

(
x2 +

1

x2

)

Solution: Since −1 < sin π(x2 + 1
x2 ) < 1, we see that

−|x| ≤ x sin π

(
x2 +

1

x2

)
≤ |x|

Since limx→0 |x| = limx→0−|x| = 0, by Squeeze Theorem, limx→0 x sin π
(
x2 + 1

x2

)
=

0
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(e) lim
x→∞

x3 + 2x + 1

x3 − 2x + 1
Solution:

lim
x→∞

x3 + 2x + 1

x3 − 2x + 1
= lim

x→∞
1 + 2

x2 + 1
x3

1− 2
x2 + 1

x3

=
1

1
= 1

(f) lim
x→π/2

cos x

2x− π

Solution: Direct substituiton x = π/2 gives 0
0

which is meaningless. Thus, we can
use L’Hospital’s rule, which gives

lim
x→π/2

cos x

2x− π
= lim

x→π/2

− sin x

2
=
−1

2
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2. Compute the derivatives of the following functions

(a) f(x) = x3 − 12x2 + x + 2π

Solution: f ′(x) = 3x2 − 24x + 1

(b) f(x) = (2x + 1) sin(x)

Solution: f ′(x) = (2x + 1)′ sin(x) + (2x + 1)(sin(x))′ = 2 sin(x) + (2x + 1) cos(x)

(c) g(s) =
√

1 + e2s

Solution: By chain rule, using u = 1 + e2s:

dg

ds
=

dg

du

du

ds
=

d(
√

u)

du

d(1 + e2s)

ds
=

1

2
√

u
2e2s =

e2s

√
1 + e2s

(d) h(t) = 1+et

1−et

Solution: By quotient rule,

h′(t) =
(1 + et)′(1− et)− (1 + et)(1− et)′

(1− et)2
=

et(1− et)− (1 + et)(−et)

(1− et)2

=
et − (et)2 + et + (et)2

(1− et)2
=

2et

(1− et)2

(e) f(x) = (2x + 2)10

Solution: By chain rule,

f ′(x) = 10(2x + 2)2(2x + 2)′ = 20(2x + 2)9

(f) g(x) = x(sin x)

Solution: We will use logarithmic derivative:

(ln g(x))′ = (ln x(sin x))′ = ((sin x) ln x)′ = (sin x)′ ln x + (sin x)(ln x)′

= (cos x) ln x + (sin x)
1

x

Thus, using (ln g)′ = g′
g
, we get

g′(x) = g(x)(ln g(x))′ = x(sin x)[(cos x) ln x +
sin x

x
]
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3. Let f(x) = xe(−x2).

(a) Find asymptotes of f(x) (hint: f(x) = x

e(x2)
)

Solution: This function is continuous everywhere, so there are no vertical asymp-
totes. To find horizontal asymptotes, we need to compute limx→±∞ f(x). Writing
f(x) = x

e(x2)
, we see that as x →∞, both numerator and denominator have limit

∞. Thus, we can not use quotient rule (it would give ∞
∞ , which is meaningless);

however, we can use L’Hospital’s rule:

lim
x→∞

x

e(x2)
= lim

x→∞
1

2xe(x2)
= 0

since limx→∞ 2xe(x2) = ∞. Similar computation gives

lim
x→−∞

f(x) = 0

Thus, the horizontal asymptote is y = 0.

(b) Compute the derivative of f(x)

Solution: f ′(x) = (x)′e(−x2)+x
(
e(−x2)

)′
= e(−x2)+x

(
−2xe(−x2)

)
= (1−2x2)e(−x2)

(c) On which intervals is f(x) increasing? decreasing?

Solution: f(x) is increasing when f ′(x) > 0, i.e. (1 − 2x2)e(−x2) > 0. Since
e(−x2) > 0, it is equivalent to 1− 2x2 > 0, i.e. 1 < 2x2, or x2 < 1/2. Solutions of
this last inequality are − 1√

2
< x < 1√

2
. So f(x) is increasing on (− 1√

2
, 1√

2
).

Same argument shows that f(x) decreasing on (−∞,− 1√
2
) and on ( 1√

2
,∞)

(d) Sketch a graph of f(x) using the results of the previous parts and the fact that
f(0) = 0.
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4. Let f(x) = 1√
1+x

. Write the linear approximation for f(x) near x = 0 and use it to

estimate f(0.1).

Solution: General formula is f(x) ≈ f(a) + f ′(a)(x − a). In this case, a = 0, f(a) =
1√
1+0

= 1. To find f ′(0), compute f ′(x) and then substitute x = 0:

f(x) = (1 + x)−1/2

f ′(x) = −1

2
(1 + x)−3/2

Thus, f ′(0) = −1
2
. Therefore,

f(x) ≈ 1− 1

2
(x− 0) = 1− x

2

Substituting x = 0.1, we get

f(0.1) ≈ 1− 0.1

2
= 1− 0.05 = 0.95
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5. Let f(x) = −2x3 + 6x2 − 3.

(a) Compute f ′, f ′′.
Solution:

f ′(x) = −6x2 + 12x

f ′′(x) = −12x + 12

(b) On which intervals is f(x) increasing/decreasing?

Solution: f(x) is increasing when f ′(x) > 0:

− 6x2 + 12x > 0

− 6x(x− 2) > 0

Since the graph of −6x2 + 12x is a parabola witht he branches going down, this
expression is positive between the roots, i.e. for 0 < x < 2. Thus, f ′(x) > 0 on
the interval (0, 2), and f(x) is increasing on (0, 2).

Similar argument shows that f ′(x) < 0 on (−∞, 0) and on (2,∞); thus, on these
intervals f(x) is decreasing.

(c) On which intervals is f(x) concave up/down?

Solution: f(x) is concave up when f ′′(x) > 0, i.e. −12x + 12 > 0, or 1 − x > 0,
x < 1. Threfore, f(x) is concave up on (−∞, 1) and concave down on (1,∞).

(d) Find all critical points of f(x). Which of them are local maximums? local mini-
mums? neither? Justify your answer.

Solution: Critical points are where f ′′(x) = 0, i.e.

− 6x2 + 12x = 0

x2 − 2x = 0

x(x− 2) = 0

So the critical points are x = 0, x = 2.

Since f(x) is decreasing for x < 0 and increasing for 0 < x < 2, by first derivative
test, x = 0 is a local minimum. Similarly, since f(x) is increasing for 0 < x < 2
and decreasing for x > 2, x = 2 is a local maximum.

6. It is known that the polynomial f(x) = x3 − x − 1 has a unique real root. Between
which two whole numbers does this root lie? Justify your answer.

Solution: Computing the values of f(x) for several whole values of x, we get

f(−2) = −7

f(−1) = −1

f(0) = −1
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f(1) = −1

f(2) = 5

Thus, we see that f(x) changes sign on the intrerval [1, 2]. SInce any polynomial is
continuous, by Intermediate Value Theorem f(x) must have a root somewhere on this
interval. Thus, the root is between 1 and 2.

7. It is known that for a rectangular beam of fixed length, its strength is proportional to
w · h2, where w is the width and h is the height of the beam’s cross-section.

Find the dimensions of the strongest beam that can be cut from a 12” diameter log
(thus, the cross-section must be a rectangle with diagonal 12”).

Solution: The dimensions of the beam are width w and height h. They must satisfy
the conditions h ≥ 0, w ≥ 0. In addition, since the diagonal of the cross-section must
be 12 inches, Pythagorean theorem gives h2 + w2 = 122 = 144. Thus, we need to find
the maximum of the function wh2, where h,w are real numbers subject to the above
conditions.

Let us rewrite everything in terms of w. Then h =
√

144− w2; restrictions h ≥ 0,
w ≥ 0 give 0 ≤ w ≤ 12, and the strength is given by

s(w) = w(
√

144− w2)2 = w(144− w2) = −w3 + 144w

So we need to find the maximum of this function on the interval [0, 12].

f ′(w) = −3w2 + 144, so critical points are when

− 3w2 + 144 = 0

144 = 3w2

w2 = 48

w = ±
√

48 = ±
√

16 · 3 = ±4
√

3

Thus, on [0, 12] there is a unique critical point, w = 4
√

3.

To find the maximum, we compare the values of the function at the critical point and
the endpoints:

f(0) = 0(144− 02) = 0

f(12) = 12(144− 122) = 0

f(4
√

3) = 4
√

3(144− (4
√

3)2) = 4
√

3(144− 48) = 4
√

3 · 96
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Clearly, the largest value is f(4
√

3); thus, this is the maximum. So the best width is
4
√

3, and the corresponding height is h =
√

144− w2 =
√

96 = 4
√

6.

8. The curve defined by the equation

y2(y2 − 4) = x2(x2 − 5)

is known as the “devil’s curve”. Use implicit differentiation to find the equation of the
tangent line to the curve at the point (0;−2).

Solution: Rewriting the equation in the form

y4 − 4y2 = x4 − 5x2

and taking derivative of both sides, we get y′(4y3 − 8y) = 4x3 − 10x, so

y′ =
4x3 − 10x

4y3 − 8y

Subsituting x = 0, y = −2, we get y′ = 0, so the tangent line is horizaontal and the
equation of the tangent line is y = −2.
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