Practice Final Exam MAT 125

May 8, 2006

Name:	_ ID number:	
Recitation number (e.g., R01):		
(for evening lecture, use "ELC 4")		

Lecture 1	MWF 9:35–10:30	An, Daniel
R01	M 11:45am-12:40pm	Solorzano, Pedro
R02	Th 3:50pm- 4:45pm	Ostrovsky, Stanislav
R03	W 11:45am-12:40pm	Solorzano, Pedro
R04	Tu 11:20am-12:15pm	Basu, Somnath
R05	Tu 11:20am–12:15pm	Han, Zhigang
R31	M 10:40am-11:35am	Patu, Ionel
Lecture 2	TuTh 2:20pm - 3:40pm	Kirillov, Alexander
R06	M 11:45am-12:40pm	Zeng, Huayi
R07	F 11:45am-12:40pm	Nowicki, Jan
R08	W 9:35am-10:30am	Ma, Xin
R09	Tu $3:50 \text{pm} - 4:45 \text{pm}$	Ostrovsky, Stanislav
R10	F 8:30am-9:25am	Ma, Xin
Lecture 3	MW~3:50pm-5:10pm	Chen, Je-Wei
R11	M 9:35am-10:30am	Poole, Thomas
R12	F 10:40am-11:35am	Panok, Lena
R13	W 2:20 pm-3:15 pm	Poole, Thomas
R14	Tu 11:20am-12:15pm	Lyberg, Ivar
R15	Th 11:20am-12:15pm	Lyberg, Ivar
R32	M 2:20pm- 3:15pm	Guo, Weixin
Evening Lec 4	TuTh 6:50pm-8:10pm	Bulawa, Andrew

Please answer each question in the space provided. Please write full **solutions**, not just answers. Unless otherwise marked, **answers without justification will get little or no partial credit**. Cross out anything the grader should ignore and circle or box the final answer. Do **NOT** round answers.

No books, notes, or calculators!

Do not open the exam until instructed by proctor!

1. Compute the following limits. Please distinguish between " $\lim f(x) = \infty$ ", " $\lim f(x) = -\infty$ " and " $\lim f(x) = \infty$ " and " $\lim f(x) = \infty$ ", " $\lim f(x) =$

(a)
$$\lim_{x \to -1} x^2 + x - 1$$

(b)
$$\lim_{x \to -3} \frac{x^2 + 2x - 3}{x + 3}$$

(c)
$$\lim_{t \to 0} \frac{\sqrt{2-t} - \sqrt{2}}{t}$$

(d)
$$\lim_{x \to 0} x \sin \pi \left(x^2 + \frac{1}{x^2} \right)$$

(e)
$$\lim_{x \to \infty} \frac{x^3 + 2x + 1}{x^3 - 2x + 1}$$

(f)
$$\lim_{x \to \pi/2} \frac{\cos x}{2x - \pi}$$

2. Compute the derivatives of the following functions

(a)
$$f(x) = x^3 - 12x^2 + x + 2\pi$$

(b)
$$f(x) = (2x+1)\sin(x)$$

(c)
$$g(s) = \sqrt{1 + e^{2s}}$$

(d)
$$h(t) = \frac{1+e^t}{1-e^t}$$

(e)
$$f(x) = (2x+2)^{10}$$

(f)
$$g(x) = x^{(\sin x)}$$

- 3. Let $f(x) = xe^{(-x^2)}$.
 - (a) Find asymptotes of f(x) (hint: $f(x) = \frac{x}{e^{(x^2)}}$)
 - (b) Compute the derivative of f(x)
 - (c) On which intervals is f(x) increasing? decreasing?
 - (d) Sketch a graph of f(x) using the results of the previous parts and the fact that f(0) = 0.
- 4. Let $f(x) = \frac{1}{\sqrt{1+x}}$. Write the linear approximation for f(x) near x = 0 and use it to estimate f(0.1).

- 5. Let $f(x) = -2x^3 + 6x^2 3$.
 - (a) Compute f', f''.
 - (b) On which intervals is f(x) increasing/decreasing?
 - (c) On which intervals is f(x) concave up/down?
 - (d) Find all critical points of f(x). Which of them are local maximums? local minimums? neither? Justify your answer.
- 6. It is known that the polynomial $f(x) = x^3 x 1$ has a unique real root. Between which two whole numbers does this root lie? Justify your answer.
- 7. It is known that for a rectangular beam of fixed length, its strength is proportional to $w \cdot h^2$, where w is the width and h is the height of the beam's cross-section.

Find the dimensions of the strongest beam that can be cut from a 12" diameter log (thus, the cross-section must be a rectangle with diagonal 12").

8. The curve defined by the equation

$$y^2(y^2 - 4) = x^2(x^2 - 5)$$

is known as the "devil's curve". Use implicit differentiation to find the equation of the tangent line to the curve at the point (0; -2).