Math 125 Solutions to Second Midterm, Vers. 3

- 1. For each of the functions f(x) given below, find f'(x)).
 - (a) 4 points $f(x) = x^5 + 5x^4 + 4x^2 + 9$ Solution:

$$f'(x) = 5x^4 + 20x^3 + 8x$$

(b) 4 points $f(x) = x^8 e^x$

Solution: This requires the product rule. Recall that the derivative of e^x is e^x .

$$f'(x) = 8x^7 e^x + x^8 e^x$$

(c) 4 points
$$f(x) = \frac{3x^2 + 9}{x^3 + 2\tan x}$$

Solution: Using the quotient rule,

$$\frac{5x(x^3 + 2\tan x) - (3x^2 + 9)(x^2 + 2\sec^2 x)}{(x^3 + 2\tan x)^2}$$

There is little point in trying to simplify this.

- 2. Compute each of the following derivatives as indicated:
 - (a) 4 points $\frac{d}{d\theta} \left[\cos \left(\frac{\pi}{180} \theta \right) \right]$

Solution: This is just the derivative of the $\cos \theta$, when θ is in degrees. Using the chain rule, we get

$$-\frac{\pi}{180}\sin\left(\frac{\pi}{180}\,\theta\right)$$

(b) 4 points $\frac{d}{du} [\sin(3u)\sin(5u)]$

Solution: Use the product rule to get

$$\left(\frac{d}{du}\sin(3u)\right)\sin(5u) + \sin(3u)\left(\frac{d}{du}\sin(5u)\right)$$

and then use the chain rule to get the answer, which is

 $3\cos(3u)\sin(5u) + 5\sin(3u)\cos(5u).$

Page 2 of 5

(c) 4 points $\frac{d}{dt} \left[\frac{t}{5} - \frac{5}{t} \right]$

Solution: If you rewrite this as $\frac{1}{5}t - 5t^{-1}$, it is clear the derivative is $\frac{1}{5} + 5t^{-2}$

3. 8 points Write a limit that represents the slope of the graph

$$y = \begin{cases} 2 + x \ln |x| & x \neq 0\\ 2 & x = 0 \end{cases}$$

at x = 0. You **do not need to evaluate the limit.**

Solution: To do this, we need to remember the definition of the derivative, which is $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$. In the current case, a = 0, and notice that f(0) = 2, so we have

$$\lim_{h \to 0} \frac{f(h) - f(0)}{h} = \lim_{h \to 0} \frac{(2 + h \ln|h|) - 2}{h}$$

This simplifies to

$$\lim_{h \to 0} \frac{h \ln |h|}{h} = \lim_{h \to 0} \ln |h| = -\infty,$$

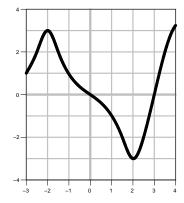
although it wasn't required for you to do this.

- 4. At right is the graph of **the derivative** f' of a function.
 - (a) 4 points List all values of x with $-3 \le x \le 4$ where f(x) has a local maximum.

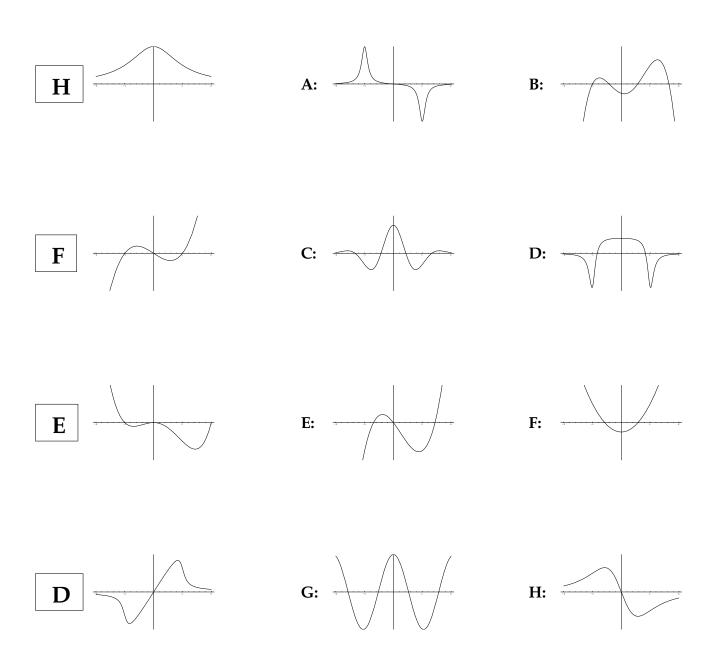
Solution: A local maximum for f(x) will occur where f'(x) changes from positive to negative. This happens at x = 0.

(b) 4 points At x = -1, is f(x) concave up, concave down, or neither?

Solution: We know that a function is concave up when its second derivative is positive, and concave down when f'' is negative. The graph shows f'(x), which is decreasing near x = -1. That means the derivative of f'(x) is negative near x = -1, so f''(-1) < 0. Hence f(x) is concave down at x = -1.



5. 16 points For each of the 4 functions graphed in the left column, find the corresponding derivative function among any of the 8 choices on the right (not just on the same row) and put its letter in the corresponding box.



- 6. Let $f(x) = x e^{-6x}$.
 - (a) 3 points Calculate f'(x)

Solution: We use the product rule and the chain rule:

$$f'(x) = e^{-6x} - 6x \, e^{-6x}$$

(b) 3 points Calculate f''(x)?

Solution: Taking the derivative of the above gives

$$f''(x) = -6e^{-6x} - 6e^{-6x} + 36x e^{-6x}$$

which simplifies to

$$36x e^{-6x} - 12e^{-6x}$$

(c) 4 points For what values of x is f(x) increasing?

Solution: To answer this, we need to know when f'(x) > 0, that is, where

 $e^{-6x} - 6x \, e^{-6x} > 0$

Factoring out the exponential term gives $e^{-6x}(1-6x) > 0$, and since e^{-6x} is always positive, we only need ask where 1-6 > 0. This happens for

$$x < \frac{1}{6}.$$

(d) 4 points For what values of x is f(x) concave down?

Solution: We need to know when f''(x) < 0, so factor f''(x) as

$$12e^{-6x}(3x-1).$$

As before, we can ignore the exponential term, since it is always positive, and we see that f''(x) < 0 when x < 1/3.

7. 10 points Write the equation of the line tangent to the curve

$$y = 3x^4 - x + \sqrt{x}$$
 at $x = 1$

Solution: To write the equation of a line, we need a point and a slope. Since the line is tangent to the curve at x = 1, it contains the point (1, f(1)) = (1, 3). To get the slope, we calculate f'(1). Taking the derivative gives

$$f'(x) = 12x^3 - 1 + \frac{1}{2}x^{-1/2},$$

so $f'(1) = 12 - 1 + \frac{1}{2} = \frac{23}{2}$. Hence the line is

$$y-3 = \frac{23}{2}(x-1)$$
, or, equivalently, $y = \frac{23}{2}x - \frac{17}{2}$

8. 10 points A ladder 12 feet long rests against a vertical wall. Let θ be the angle between the top of the ladder and the wall, and let ℓ be the distance from the bottom of the ladder to the wall. If the bottom of the ladder slides away from the wall, how fast does ℓ change with respect to θ when $\theta = \frac{\pi}{6}$?

Solution: Since the ladder forms a right triangle with the wall, we have $\ell = 12 \sin \theta$. The rate of change of ℓ with respect to θ is $\frac{d\ell}{d\theta}$, which is $12 \cos \theta$. We want its value when $\theta = \frac{\pi}{6}$, so that is

$$12\cos\left(\frac{\pi}{6}\right) = 12 \cdot \frac{\sqrt{3}}{2} = 6\sqrt{3}$$

