1. For each of the functions \(f(x) \) given below, find \(f'(x) \).

 (a) \(f(x) = \frac{1 + 2x^2}{1 + x^3} \)

 Solution: This is a straightforward quotient rule problem:
 \[
 f'(x) = \frac{(4x)(1 + x^3) - (1 + 2x^2)(3x^2)}{(1 + x^3)^2} = \frac{4x - 3x^2 - 2x^4}{(1 + x^3)^2}
 \]
 The simplification is not required.

 (b) \(f(x) = \sin(4x) \cos(x) \)

 Solution: Apply the product rule, with a chain rule for the \(\sin(4x) \) term to get
 \[
 f'(x) = 4 \cos(4x) \cos(x) - \sin(4x) \sin(x).
 \]

 (c) \(f(x) = \arctan\left(\sqrt{1 + 2x}\right) \)

 Solution: Applying the chain rule, we get
 \[
 f'(x) = \frac{1}{1 + (\sqrt{1 + 2x})^2} \cdot \frac{1}{2}(1 + 2x)^{-1/2} \cdot (2) = \frac{1}{(2 + 2x)\sqrt{1 + 2x}}
 \]

 (d) \(f(x) = \ln(\tan(x)) \)

 Solution: Another chain rule problem:
 \[
 f'(x) = \frac{1}{\tan(x)} \cdot \sec^2(x) = \frac{\cos(x)}{\sin(x)\cos^2(x)} = \sec(x)\csc(x).
 \]

2. Compute each of the following derivatives as indicated:

 (a) \(\frac{d}{dt} \left[e^{\sin^2(t)} \right] \)

 Solution: The chain rule gives
 \[
 e^{\sin^2(t)} \cdot 2 \sin(t) \cdot (-\cos(t)) = -2 \sin(t) \cos(t) e^{\sin^2(t)}
 \]
4 points (b) \[\frac{d}{du}\left[u^3 \ln(\sin(u))\right] \]

Solution: Using the product rule (and the chain rule), we obtain
\[
3u^2 \ln(\sin(u)) + u^3 \frac{1}{\sin(u)} \cos(u) = u^2 \left(3 \ln(\sin(u)) + u \cot(u)\right)
\]

4 points (c) \[\frac{d}{dz}\left[\sqrt{1 + \sqrt{1 + z}}\right] \]

Solution: View this as \[\frac{d}{dz}\left[(1 + (1 + z)^{1/2})^{1/2}\right] \] and apply the chain rule:
\[
\frac{1}{2}(1 + (1 + z)^{1/2})^{-\frac{1}{2}} \cdot \frac{1}{2}(1 + z)^{-\frac{1}{2}} = \frac{1}{4\sqrt{1 + z} \sqrt{1 + \sqrt{1 + z}}}
\]

4 points (d) \[\frac{d}{dx}\left[e^x - \pi^2\right] \]

Solution: Remembering that \(\pi^2 \) is a constant, the derivative is just \(e^x \).

3. The curve \(x^2 - xy + y^2 = 4 \) is an ellipse centered at the origin.

4 points (a) Find the points where this ellipse intersects the \(x \)-axis.

Solution: Since we are looking for points on the \(x \)-axis, this is where \(y = 0 \). Substituting \(y = 0 \) into the equation of the ellipse gives
\[
x^2 = 4 \quad \text{so} \quad x = \pm 2.
\]

6 points (b) Find the slope of the tangent line to this ellipse at each of the points from part (a).

Solution: Using implicit differentiation, we obtain \(2x - \left(y + x \frac{dy}{dx}\right) + 2y \frac{dy}{dx} = 0 \).

Substituting \(y = 0 \) and \(x = \pm 2 \) yields
\[
\pm 4 = \pm 2 \frac{dy}{dx}
\]
and so the slope at either point is 2.
5 points
(c) Locate all points on this ellipse where the line tangent to the curve is horizontal.

Solution: To do this, we need to find all points \((x, y) \) where the slope of the tangent line is zero. From part (b), we have

\[
2x - \left(y + x \frac{dy}{dx} \right) + 2y \frac{dy}{dx} = 0;
\]
solving this for \(\frac{dy}{dx} \) gives

\[
\frac{dy}{dx} = \frac{y - 2x}{2y - x}.
\]

Thus, the slope of the tangent line will be zero when \(y = 2x \).

Now we go back to the equation of the ellipse \(x^2 - xy + y^2 = 4 \) and substitute \(y = 2x \) to obtain

\[
x^2 - x(2x) + (2x)^2 = 4, \quad \text{or equivalently,} \quad 3x^2 = 4.
\]

Thus, \(x = \pm 2/\sqrt{3} \). Since \(y = 2x \), we have \(y = \pm 4/\sqrt{3} \). Thus, the two points in question are

\[
\left(\frac{2}{\sqrt{3}}, \frac{4}{\sqrt{3}} \right) \quad \text{and} \quad \left(-\frac{2}{\sqrt{3}}, -\frac{4}{\sqrt{3}} \right)
\]

4. Let \(f(x) = x \ln(4x) \)

4 points
(a) Calculate \(f'(x) \)

Solution: Applying the product rule (and the chain rule) gives

\[
f'(x) = \ln(4x) + x \frac{1}{4x} \cdot 4 = \ln(4x) + 1.
\]

4 points
(b) Calculate \(f''(x) \)

Solution: Taking the derivative of the above, we get \(f''(x) = \frac{1}{x} \).

3 points
(c) For what values of \(x \) is \(f(x) \) increasing?

Solution: As we all know, \(f(x) \) is increasing when \(f'(x) > 0 \). Thus, using our answer from part (a) tells us that we need to know when

\[
\ln(4x) + 1 > 0 \quad \text{or, equivalently,} \quad \ln(4x) > -1.
\]

Exponentiating both sides gives \(4x > e^{-1} \), so we know that \(f(x) \) is increasing for \(x > \frac{1}{4e} \).
(d) For what values of \(x \) is \(f(x) \) concave down?

Solution: We need to determine when \(f''(x) < 0 \). From part (b), this means

\[
\frac{1}{x} < 0 \quad \text{that is,} \quad x < 0.
\]

However, remember that \(\ln(2x) \) is only defined for \(x > 0 \). Thus \(f(x) \) is concave up for all values of \(x \) in its domain. There are no values of \(x \) where \(f(x) \) is concave down.

5. The volume \(V \) of a spherical ball is growing at a constant rate of \(1 \ m^3/\text{min} \). Determine the rate of increase of its surface area \(S \) (in \(m^2/\text{min} \)) when its radius \(r \) is equal to 1 meter.

Perhaps you might find it helpful to recall that the volume of a sphere of radius \(r \) is given by \(V = \frac{4}{3} \pi r^3 \), and its surface area is \(S = 4\pi r^2 \).

Solution: The statement that the volume is growing at \(1 \ m^3/\text{min} \), we have \(\frac{dV}{dt} = 1 \). We are asked to find the rate of increase of the surface area when the radius is 1, that is, \(\frac{dS}{dt} \) when \(r = 1 \).

We know that

\[
V = \frac{4}{3} \pi r^3 \quad \text{so} \quad \frac{dV}{dt} = 4\pi r \frac{dr}{dt}
\]

When \(r = 1 \), the equation on the right gives us \(1 = 4\pi (1) \frac{dr}{dt} \), so \(\frac{dr}{dt} = \frac{1}{4\pi} \).

Now we use

\[
S = 4\pi r^2 \quad \text{to get} \quad \frac{dS}{dt} = 8\pi r \frac{dr}{dt}.
\]

Since \(r = 1 \) and \(\frac{dr}{dt} = \frac{1}{4\pi} \), we have

\[
\frac{dS}{dt} = 8\pi \frac{1}{4\pi} = 2.
\]
6. Use a linear approximation to estimate the value of \(\arcsin(0.51)\)

Solution: We use the following two facts:

- \(f(x) \approx f(a) + f'(a)(x - a)\) for \(x\) near \(a\),
- \(\arcsin(0.5) = \pi/6\).

Thus, if we take \(a = 1/2\) and \(f(x) = \arcsin(x)\), we can approximate \(f(0.51)\) using the tangent line.

Recalling that \(f'(a) = \frac{1}{\sqrt{1 - a^2}}\), we have

\[
f'(1/2) = \frac{1}{\sqrt{1 - (1/2)^2}} = \frac{1}{\sqrt{3}/2} = \sqrt{\frac{4}{3}} = \frac{2}{\sqrt{3}}.
\]

Thus, we have

\[
\arcsin(0.51) \approx \frac{\pi}{6} + \frac{2}{\sqrt{3}}(0.51 - 0.5) = \frac{\pi}{6} + \frac{0.02}{\sqrt{3}}.
\]

If you prefer to phrase this in terms of differentials, you get the same answer. The differential of \(\arcsin(x)\) is \(dy = \frac{dx}{\sqrt{1 - x^2}}\). Taking \(x = 1/2\) and \(dx = 0.01\), we have

\[
\arcsin(0.51) \approx \arcsin(1/2) + dy = \frac{\pi}{6} + \frac{0.02}{\sqrt{3}}.
\]

This is approximately \(\frac{\pi}{6} + 0.011547\) while \(\arcsin(0.51)\) is \(\frac{\pi}{6} + 0.011586\) to 6 places. Obviously, you wouldn’t have been able to determine that without a calculator.

Note that the function \(\arcsin(x)\) gives a result in radians. If you gave an answer in degrees, I suspect that you got the derivative all wrong…that is, you neglected to adjust by \(180/\pi\).