MAT 118 Spring 2017

Practice Exam for Midterm #2

To be reviewed in class on Monday, 4/17/17

1. Consider the following graph:

- (a) Write the degrees of the vertices on the graph.
- (b) Does this graph have any Euler circuits? Why or why not?
- (c) Does this graph have any Euler paths? Why or why not?
- (d) Give an optimal Eulerization of the graph. How many edges did you add?
- 2. (a) Give an example of a connected graph with 6 vertices, each vertex of degree 2.
 - (b) Give an example of a graph with 6 vertices, each vertex of degree 1.

3. Consider the following graph:

- (e) Write the degrees of the vertices on the graph.
- (f) Does this graph have any Euler circuits? Why or why not?
- (g) Does this graph have any Euler paths? Why or why not?
- (h) Give an Eulerization of the graph.

4. Consider the following graph:

- (a) Find a path from v to y of length 6.
- (b) Find all circuits in the graph of length 4. How many are there?
- (c) Semi-eulerize the graph, leaving x and y as the two distinguished odd vertices.

5. For each of the following, if your answer is "yes" then draw an example, and if your answer is "no" then give a brief explanation.

- (a) Does the graph in problem #4 have any Hamilton circuits?
- (b) Does the graph in problem #4 have any Hamilton paths?

6. Consider the following weighted graph:

- (a) Using the NNA starting at A, give the resulting Hamilton circuit and its total weight.
- (b) Using the NNA starting at B, give the resulting Hamilton circuit and its total weight.
- (c) Using the Cheapest link algorithm, give the resulting Hamilton circuit and its total weight.

7. For the following graph, produce 3 different spanning trees.

8. For the weighted graph in problem #6, reproduced below, use Kruskal's algorithm to find an MST, and give its total weight.

- 9. (a) How many spanning trees does the following graph have?
 - (b) If each edge has weight 3, what's the total weight of an MST?

