Congruence and Isometry

Congruence of triangles mean corresponding parts are equal. In laymen’s
terms this means we can cut one of the triangles out of the plan, move it
around, and then lay it over the other triangle.

Why do we focus on triangles in secondary school (and earlier)?

e Right triangles are special and we use them to develop trigonometry.

e Triangles are easy to work with (sum of angles is 180°, sum of two sides
is greater than the third side)

e We can make any other polygon out of trianges. In otherwords, trian-
gles are the building blocks of polygons.

Here is a polygon that has been constructed out of triangles.
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We talk a lot about when two triangles are the same. We have the traditional
list of when triangles are the same:

e SSS (side, side, side: the corresponding sides have equal measure)

e SAS (side, angle, side: the corresponding sides and included angles
have equal measure)

e ASA (angle, side, angle: the corresponding angles and included side
have equal measure)

e AAS (angle, angle, side: the corresponding angles and a non-included
side have equal measure — this is basically the same as ASA)



But what about SSA (side, side, angle:the corresponding sides and a non-
included angle have equal measure) or AAA (angle, angle, angle: the corre-
sponding angles have equal measure)?

Given two side lengths and a non-included angle (SSA) there are three pos-
sibilities:

1. We can’t build any triangle.

2. We can build exactly one triangle.

3. We can build two possible triangles.

Below are the pictures showing the three possibilities:
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From AAA (corresponding angle measures are equal) we get similarity which
means that corresponding side lengths, while not necessarily equal, are in
ratio.

Notice that a congruence is the same thing as looking at figures modulo
some relation. In our case figure; ~ figure, if there is a motion from one
to the other. What do we mean by motions? We mean distance preserving
functions. That is, if x and y are two points on a figure and f is a function
taking one figure to another then d(x,y) = d(f(x), f(y)) -

Our motions are:

. . cosf) —sind x
1. A rotation of 6 degrees: (x,y) — ( sinfd  cosd ) ( y )



2. A relflection over a line: Fine the line perpendicular to given line which
goes through your point then travel the same distance from the per-
pendicular line to the point in the opposite direction.

3. A translation: (z,y) — (x + ¢,y + d) for some ¢,d € R

We can also consider other motions and call them isometries.

Here is an example:
We could fix a circle 7 and, taking points other than the origin, take the
inversion through the circle.

This changes our usual notion of congruence and what a line is. We get
hyperbolic geometry from this.

M.C. Escher had a varied notion of congruence, often making art using the
Poincare disk. In the picture below, each of the demons are congruence and
each of the angles are congruent.




Considering some congruences gives us nice group structures. The following
are some examples:

What if we were in R? and we wanted to onsider the figures that are in-
varient by a 90° rotation. In otherwords, (z,y) — (—y,z) . Let’s call
this rotation f. Notice that f(z,y) = (—y, ) but if we apply f again then,
f(=y,2) = (=2, —y), applying again, f(—z,~y) = (y, —z) and applying a
fourth time f(y,—x) = (x,y). So by applying this rotation 4 times we get
back to where we started. Thus if we let a be any point in R? then we get
the structure, {a,a? a3, id} = Z,. So any object that is invarient by a 90°
rotation must have 4-fold symmetry.

Something else we can consider is taking an object from the plane, mov-
ing it around, and putting it back where it started. Let’s consider this with
the equilateral triangle. How many ways can we take the triangle out and
put it back. It stands to reason that there are 6, 3 that come from rotations
and 3 that come from reflections. How do we know that those are all of the
symmetries? We can pick a vertex. Then, face up, we have three choices of
where to put the vertex back and face down we have another three choices.
What’s nice is that all 6 of these motions are generated by 1 rotation of
120° and 1 reflection. This is where algebra and geometry intersect. We can
consider this with any regular polygon.

Next is the notion of wallpaper symmetry. There are only 17 kinds of sym-
metries that wall paper can have. See here for more information. Notice
that there are only 4 main rotational symmetries in the wallpaper groups.
They come from looking at pieces of wallpaper shaped like triangles, squares,
hexagons, and octagons and gluing them together. Then our rotational sym-
metry comes from rotating each smaller piece of the paper. Why are these
the only 4 shapes that work? We will discuss that next time.


http://en.wikipedia.org/wiki/Wallpaper_group

