Relations: What are some of the relations of interest to us?

- functions
- equivalence relations (which lead to partitions)
- order

If you have an equivalence relation on \(\mathbb{X} \) then you can form a partition of \(\mathbb{X} \) into equivalence classes.

\[
[a] = \{x \in \mathbb{X} | x \sim a\}
\]

\(\mathbb{X}/\sim = \{[a] | a \in \mathbb{X}\} \)

This is what we’ve already been doing to build up to the set of Reals from the Naturals:

\[
\mathbb{N} / \sim_1 = \mathbb{Z}
\]

\[
\mathbb{Z} / \sim_2 = \mathbb{Q}
\]

\[
\left(\prod_{i=1}^{\infty} \mathbb{Z}_{10} \right) / \sim_3 = \left(\prod_{i=1}^{\infty} \mathbb{Q} \right) / \sim_4 = \mathbb{R}
\]

Functions:

- In elementary school there are numbers and operations (using numbers to get more numbers).
 - Any symbols are like constants (such as the area of a square: \(A = s^2 \))
- In Jr. High to (early) High school variables come into play.
 - Now symbols can be variables or constants (ex: \(y = 3x + 2 \)). However there is an issue of how to calculate vs. a relation.
In senior high school through college (starting roughly with precalculus) functions become mappings.

Even though there is this increase in abstraction we must keep in mind that some students at the higher levels might still be thinking in the earlier ways.

When is a function $f : A \rightarrow B$ invertible?

(Note that this is mildly different from: “given a function $f(x) = \frac{3x+2}{5x-4}$, is it invertible?”)

f is invertible if it is one to one. (It doesn’t necessarily matter if it is onto since we can restrict the domain of f^{-1} to be the image of f. \{ $y | f(x) = y$ for $x \in \text{dom}(f)$ \})

So given $f(x) = \frac{3x+2}{5x-4}$

Find $f^{-1}(x)$

Process: let $y = f(x)$, switch x and y,

$x = f(y)$

Solve for y.

Graphically, the inverse is a reflection in the line $y = x$.

Students need to understand that the step to switch x and y, $x = f(y)$, is purely notational.
Students will complain that this is wrong because you didn’t switch x & y first.

Since they don’t fully understand the concepts, they just want to follow steps.

Similarly, for $y = x^2$, without really saying it we restrict $f(x)$ to where it is one to one and solve.

$$x = y^2$$

<table>
<thead>
<tr>
<th>A:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Think: $y > 0$ AND $x > 0$</td>
</tr>
<tr>
<td>$\sqrt{x} = \sqrt{y^2}$</td>
</tr>
<tr>
<td>$y = \sqrt{x}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Also: $x > 0$ AND $y < 0$</td>
</tr>
<tr>
<td>$\sqrt{x} = \sqrt{y^2} = -y$</td>
</tr>
<tr>
<td>$y = -\sqrt{x}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A and B unified:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y = \pm \sqrt{x}$</td>
</tr>
</tbody>
</table>

This is not a function. It’s shorthand for two functions.

Ideally \pm would not be used. It would be written as two parts so students understand you’re considering two possibilities.

Generation definition of a function:

A=Domain={1,2,3}

B=Co-Domain={4,5,6}

How many functions are there from $A \to B$?

The answer is $3 \times 3 \times 3 = 27$

What about invertible functions?

$f(1) =$Choose 1 of the 3 in B$}

$f(2) =$Choose 1 of the remaining 2 in B$}

$f(3) =$Choose the last one in B$}
This is $3 \times 2 \times 1 = 6$ invertible functions.

What about for $f: \{1,2,3\} \rightarrow \{4,5,6,7\}$

There are 4^3 functions with $4 \times 3 \times 2$ invertible.

A function is completely determined by its input and output

The question of functions can be recast in the following way:

“How many permutations are there of $\{4,5,6,7\}$ taking 3 at a time?”

Rephrase and ask ourselves:

“How many ways can we choose 3 things out of a set of 4?”

\[
\binom{4}{3}
\]

This is the number of permutations of 3 out of 4 divided by the number of permutations of those 3 things.

In general:

\[
\binom{n}{k} = \frac{n!}{k!(n-k)!}
\]

Where $\frac{n!}{(n-k)!}$ is the permutation part

And $\frac{1}{k!}$ is the arrangement part

In Summary:

- Ordering n objects out of k with repetition allowed is n^k
- Ordering n objects out of k without repetition is $\frac{k!}{(k-n)!} \cdot (\text{Permutation } kP_n)$
- Choose n out of k objects without repetition or order is $\frac{n!}{k!(n-k)!} \cdot (\text{Combination } \binom{n}{k})$