MAE301

3/17

*Regents retake on Tuesday, 3/31.

Relations: What are some of the relations of interest to us?

- functions
- equivalence relations (which lead to partitions)
- order

If you have an equivalence relation on X then you can form a partition of X into equivalence classes.

$$[a] = \{x \in \mathbb{X} | x \sim a\}$$
$$\mathbb{X}_{/\sim} = \{[a] | a \in \mathbb{X}\}$$

This is what we've already been doing to build up to the set of Reals from the Naturals:

$$\mathbb{N}$$
$$\mathbb{N}_{/\sim 1} = \mathbb{Z}$$
$$\mathbb{Z}_{/\sim 2} = \mathbb{Q}$$
$$\left(\prod_{i=1}^{\infty} \mathbb{Z}_{10}\right)_{/\sim 3} = \left(\prod_{i=1}^{\infty} \mathbb{Q}\right)_{/\sim 4} = \mathbb{R}$$

Functions:

- In elementary school there are numbers and operations (using numbers to get more numbers).
 - Any symbols are like constants (such as the area of a square: $A = s^2$)
- In Jr. High to (early) High school variables come into play.
 - Now symbols can be variables or constants (ex: y = 3x + 2). However there is an issue of how to calculate vs. a relation.

• In senior High School through college (starting roughly with precalculus) functions become mappings.

*Even though there is this increase in abstraction we must keep in mind that some students at the higher levels might still be thinking in the earlier ways.

When is a function $f: A \rightarrow B$ invertible?

(Note that this is mildly different from: "given a fuction $f(x) = \frac{3x+2}{5x-4}$, is it invertible?")

f is invertible if it is one to one. (It doesn't necessarily matter if it is onto since we can restrict the domain of f^{-1} to be the image of *f*. {y|f(x) = y for $x \in dom(f)$ }

So given $f(x) = \frac{3x+2}{5x-4}$ Find $f^{-1}(x)$

Process: let y = f(x), switch x and y,

x = f(y)

Solve for *y*.

Graphically, the inverse is a reflection in the line y = x.

Students need to understand that the step to switch x and y, x = f(y), is purely notational.

$y = \frac{3x+2}{5x-4}$	Students will complain that this is wrong because you didn't switch <i>x</i> & <i>y</i> first.
5xy - 4y = 3x + 2 x(5y - 3) = 2 + 4y	Cines they doubt fully used on the odd the second state
$x_{1}(3y - 3y) = 2 + 4y$ $x_{2} = 2 + 4y = e^{-1}(x)$	Since they don't fully understand the concepts, they just want to follow steps.
$x = \frac{5y - 3}{5y - 3} = f$ (y)	· · · , , . · · · · · · · · · · · · · ·
$y = \frac{2+4x}{5x-3} = f^{-1}(x)$	
With an implicit $x \neq \frac{4}{5}$ on $f(x)$ and $y \neq \frac{3}{5}$ on $f(y)$	
5 5	

Similarly, for $y = x^2$, without really saying it we restrict f(x) to where it is one to one and solve.

$$x = y^2$$

A:	В:	A and B unified:
Think: $v > 0$ AND $x > 0$	Also: $x > 0$ AND $y < 0$	$y = \pm \sqrt{r}$
$\sqrt{x} = \sqrt{y^2}$	$\sqrt{x} = \sqrt{y^2} = -y$	*This is not a function. It's
$y = \sqrt{x}$	$y = -\sqrt{x}$	shorthand for two functions.

Ideally \pm would not be used. It would be written as two parts so students understand you're considering two possibilities.

Generation definition of a function:

$$A=Domain=\{1,2,3\}$$

 $B=Co-Domain=\{4,5,6\}$

How many functions are there from $A \rightarrow B$?

The answer is 3 * 3 * 3 = 27

What about invertible functions?

$$f(1) = \{\text{Choose 1 of the 3 in B}\}$$

 $f(2) = \{Choose 1 of the remaining 2 in B\}$

 $f(3) = \{Choose the last one in B\}$

This is 3 * 2 * 1 = 6 invertible functions.

What about for $f: \{1,2,3\} \to \{4,5,6,7\}$

There are
$$4^3$$
 functions with $4 * 3 * 2$ invertible.

A function is completely determined by its input and output

The question of functions can be recast in the following way:

"How many permutations are there of {4,5,6,7} taking 3 at a time?"

Rephrase and ask ourselves:

"How many ways can we choose 3 things out of a set of 4?"

$\binom{4}{3}$

This is the number of permutations of 3 out of 4 divided by the number of permutations of those 3 things.

In general:
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Where $\frac{n!}{(n-k)!}$ is the permutation part And $\frac{1}{k!}$ is the arrangement part

In Summary:

- Ordering *n* objects out of *k* with repetition allowed is n^k
- Ordering *n* objects out of *k* without repetition is $\frac{k!}{(k-n)!}$ (Permutation $_kP_n$)
- Choose *n* out of *k* objects without repetition or order is $\frac{n!}{k!(n-k)!}$ (Combination $\binom{n}{k}$)