
Michael Cento – Notes from February 26

Recall:  Going from Q to R by simple “throwing in” the irrational numbers is 
unsatisfying since “irrational” cannot be defined in this way.

High school students naturally make a transition from Q to the Algebraic numbers, with a 
few additional elements such as π and e that are not algebraic numbers. (These are called 
transcendental numbers).

Algebraic Numbers: Real (and ONLY Real) solutions of polynomials.

Theorem:  If p(x) is a polynomial of degree ≤ 4, then the solutions can be expressed in 
terms of radicals (i.e. √2, √3, …)

p(x) = anxn + an-1xn-1 + … + a0  ,  ai  ϵ Z
BUT, there exist polynomials of degree ≥ 5 for which this is not true (i.e. there is no 
formula, and the solutions cannot be ).

For example: x5 = 32.  This is easy to solve, since the 5th root of 32 is 2.  However, there 
is no concrete formula that can be used to solve an equation such as 

x5 – 3x4 – 11x3 + 27x2 + 10x - 23 = 0,
even though it isn't too hard to determine that the solutions are approximately -3.004, 
-0.9832, 0.9593, 2.032, and 3.995.

A high school student has a primitive understanding of sets of numbers such as the real 
numbers.  A teacher can tell a student there are “other” numbers that exist in addition to 
the ones they already know of (such as integers, fractions, roots, etc) and most likely the 
student will be fine with this limited knowledge.  We as teachers must be cognizant of 
this lack of knowledge on the part of the student.

Recall that when we first discussed real numbers earlier (2/5), we gave a definition of a 
real number as the set of all Cauchy sequences, where two sequences were identified if 
they had the same limit.  Unfortunately, this definition is not one that most students can 
understand or identify with.

We also can formally define reals as Dedekind cuts (which we also discussed), but again, 
this is a difficult concept.  Recall that a Dedekind cut is just a partitioning of the rational 
numbers into two sets, such that every number in one set (the “left” set) is less than every 
number in the other set (the “right” set).  There 2 cases when making the Dedekind cut:

1) The cut is made at a rational number, so when the sea of numbers is divided
into 2 sets, there is a either a largest rational element in the left set, or a 
smallest rational element in the right set.  (Obviously, both cannot be true 
simultaneously, since between any two rationals there is another.)

  <----------](----------->  or   <----------)[----------->
   Largest rational^                                ^Smallest rational 



2) The cut is made between rationals so there is no largest or smallest elements a 
in either set.  

<----------)(----------->
Case (1) gives us back something that corresponds to the rational numbers, but case (2) 
gives something new (an irrational number).

Rather than going this route, we can define a real number to be any infinite decimal. Note 
that we can represent a “terminating decimal” like 3.4 by adding infinitely many zeros on 
the end.

Examples: 1.1427658319…   or 1.0000000
As long as we agree not to use a representation that ends in all 9s,  each such 
representation is unique.

Note that this is really nothing new.  For example, we can view such infinite decimals as 
a way to identify a  preferred Cauchy Sequence:

31796.81245 = 30,000 + 700 + 90 + 6 + .8 + .01 + .002 + .0004 + .00005
In general, we can represent any real number as

          n + ∞∑i=0 ai/10i   
where n is the integer part and ai is the ith digit to the right of the decimal point.  The 
sequence of partial sums of the above is the preferred Cauchy sequence.

Here we agree that 0.999… = 1.000…   An easy way to see this is to note that since
1/3 = 0.333...

multiplying both sides by 3 gives us
1 = 0.99… 

We have something similar to be true in any base:
Base 2: 0.111… = 1.0
Base 3: 0.222… = 1.0

Note also that an infinite decimal is really the same thing as a Dedekind cut.  We are 
specifying the “right set” by giving a sequence of lower bounds on it (each time we write 
another decimal in the expansion, we move the bound to the right a little bit).

Countable: a set is countable if a natural number can be assigned to each member of the 
particular set (there exists a 1-1 correspondence with the natural numbers).  An 
equivalent definition is that an ordering can be chosen so that each element in a set is a 
definite number of steps from the first element.
Q is a countable set, as are the algebraic numbers.

However, there are uncountably many real numbers, despite the fact that between any 
two real numbers, there lies another rational number.



Counting Q:
Q: {1/1, 1/2, 1/3, 2/3, 1/4, 2/4, 3/4, 1/5, …}
         1     2     3     4     5     6     7      8   …

Solving Equations depends on the Domains of discussion
N vs Z
x + 3 = 5 has a solution in N, namely x = 2
x + 5 = 3 has no solution in N  (-2 is not a member of N)

Z vs Q
3x = 6 has a solution in Z , namely x = 2
6x  = 3 has no solution in Z  (1/2  is not an integer)

Q vs R or C
x2 = 4 has solutions in Q , namely x = 2 and x = -2
x2 = 2 has none since radicals are not part of Q
x2 = -1 has none since numbers of the form a + bi (a, b in R) are not part of Q

In all of these cases, we have a desire to fill these gaps. (Of course, the jump from 
algebraic numbers to R is motivated by a desire for continuity rather than existence of 
solutions).   Furthermore, historically the complex numbers are a useful computational 
tool, even if one doesn't want to admit them as “true” numbers.
For example, in order to solve the general cubic (x3 + ax2 + bx + c = 0), it is in fact 
simplest to compute with complex solutions, even to find the real (R) solutions.

Similarly, you may remember from differential equations that in solving a second order 
linear equation, you sometimes get solutions of the form y = e(a + bi)x, and then by various 
manipulations arrive at a purely real solution of the form y = eax(c1cos(bx)  + c2sin(bx))

We let i  be a solution x2 = -1 (that is, i = √-1).  Now we set 
C = R[i] = {a + bi | a,b  ϵ R}

So to go from the Reals to the Complex numbers it is enough to adjoin the new number i 
alone.  The following theorem guarantees this is enough.

The Fundamental Theorem of Algebra:
Let f(x) be a polynomial in R of degree n = 1, 2, 3 or 4.  Then f(x) has exactly n roots in 
C (counting multiplicity).  Equivalently, f(x) factors completely in C[x] into n linear 
factors. (Irving)

The Fundamental Theorem of Algebra has important consequences in high school 
mathematics.  For example, we can deduce that the graph of a polynomial of degree d has 
at most d-1 turning points (“bumps”).
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