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ABSTRACT. We give an elementary introduction to the holomorphic dynamics of mappings on the
Riemann sphere, with a focus on Julia and Fatou sets. Our main emphasis is on the dynamics of
polynomials, especially quadratic polynomials.

1. INTRODUCTION

In this note, we briefly introduce some of the main elementary ideas in holomorphic dynamics.
This is by no means a comprehensive coverage. We do not discuss the Mandelbrot set, despite its
inherent relevance to the subject; the Mandelbrot set is covered in companion articles by Devaney
[Dev13, Dev14].

For a more detailed and and comprehensive introduction to this subject, the reader is refered to
the book [Mil06] by John Milnor, the survey article [Bla84] by Blanchard, the text by Devaney
[Dev89], or any of several other introductory texts ([Bea91], [CG93], etc.)

Holomorphic dynamics is the study of the iterates of a holomorphic map f on a complex man-
ifold. Classically, this manifold is one of the complex plane C, the punctured plane C∗, or the
Riemann sphere Ĉ = C ∪ {∞}.

In these notes, we shall primarily restrict our attention to the last case, where f is a rational
map (in fact, most examples will be drawn from quadratic polynomials f(z) = z2 + c, with z and
c ∈ C).

Based on the behavior of the point z under iteration of f , the Riemann sphere Ĉ is partitioned
into two sets

• The Fatou set Ff (or merely F), on which the dynamics are tame, and
• The Julia set Jf (or J ), where there is sensitive dependence on initial conditions and the

dynamics are chaotic.

We shall define these sets more precisely in Section 5, but will use these informal definitions for
the present to give some intuition.

Given the focus of this conference, we should point out that there is an inverse relationship be-
tween the approach of holomorphic dynamics and that of iterated function systems (IFS). More
specifically, the Julia set of a rational map f : Ĉ → Ĉ corresponds to the attractor for the IFS
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FIGURE 2.1. Left: under iteration of a loxodromic linear map, points spiral away from
one fixedpoint (not visible) and towards the other. Center: an elliptic transformation
corresponds to rotation of the Riemann sphere. Right: A parabolic transformation corre-
sponds to z 7→ 1 + z. Here points leave infinity from one side (the negative half-plane)
and return on the other.

consisting of {g1, g2, . . . , gd}, where the gi are branches of the inverse of f restricted to a suit-
able domain. For example, the Julia set of z2 − 1 is the attractor of the iterated function system{
w 7→

√
w + 1, w 7→ −

√
w + 1

}
.

2. LINEAR MAPS

Before turning to the dynamics of rational maps, let us first discuss iteration of a single linear
map. Much of the theory of holomorphic dynamics doesn’t apply in this case, so it is always
excluded. However, a brief overview of what happens will be helpful.

The case of iteration of a single linear map f : Ĉ → Ĉ is very simple. Such an f is a Möbius
transformation of the form

f(z) =
az + b

cz + d
with ad− bc 6= 0,

which can be viewed as an element of PSL(2,C), and has easily understood dynamics.

Except for the identity and the trivial map z 7→ 1/z, these mappings have two fixed points,
counted with multiplicity. If the fixed points are distinct, we may make a holomorphic change of
coordinates moving one of them to infinity and the other to zero. In this case, the mapping becomes
of the form z 7→ λz with λ ∈ C. See Figure 2.1.

• If |λ| 6= 1, the mapping z 7→ λz is called loxodromic (or hyperbolic): under iteration,
points move away from one of the fixed point (which is repelling) and toward the other
(which is attracting).
• If |λ| = 1, z 7→ λz has two elliptic fixed points: nonzero finite points orbit around the fixed

points at zero and∞ along an elliptic path. This corresponds to a rotation of the Riemann
sphere by the angle Arg λ.
• If the two fixed points of f coincide, the mapping is conjugate to z 7→ z + 1. Here, the

point at infinity is a parabolic fixed point: orbits leave from one side, and return on the
other.
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3. FIRST EXAMPLES

Now we turn to our main subject, beginning with some simple examples. First, we remark
that in holomorphic dynamics, we only consider mappings f which have degree at least two.
The notion of “degree” of a rational mapping of Ĉ is unambiguous (unlike in the case of higher-
dimensional complex manifolds): the algebraic degree (i.e., the highest power z in the numerator
and denominator of f ) and the topological degree (i.e., the number of pre-images of a typical point)
coincide.

THE MAP z 7→ z2. We begin with an elementary analysis of the simplest rational map, f(z) = z2.

If we write z in polar coordinates with r = |z|, θ = Arg z, then the mapping is (r, θ) 7→ (r2, 2θ),
and it is easy to make the following conclusions.

• There are three fixed points for f : 0, 1, and∞.
• If |z| < 1, then fn(z) → 0; if |z| > 1, then fn(z) → ∞. Thus, 0 and ∞ are attracting

fixed points (in fact, superattracting). A point p is called an attracting fixed point if for z
in a neighborhood of p, we have fn(z)→ p.
• If |z| = 1, then |fn(z)| = 1 for all n. For this mapping, the unit circle is forward- and

backward-invariant. That is, every point in a deleted neighborhood of 1 will eventually
leave that neighborhood under f ; so for this mapping 1 is a repelling fixed point.
• In fact, any small neigborhood of a point z on the unit circle contain points which tend to
∞, points which tend to 0, and points which remain on the unit circle. As we shall see,
such behavior characterizes membership in the Julia set.

In the case of f(z) = z2, Jf is the unit circle, and the Fatou set Ff has two components: the set
of points which iterate to 0, and those which iterate to∞. (See Figure 3.1.)

Even though behavior of f on the Julia set is merely that of angle doubling, there is a surprisingly
rich collection of behaviors. For example, there are periodic points of all periods, the pre-images
of any point are dense in the unit circle. There are also points whose forward orbit is dense in the
circle.

We will refer to the set of points which iterate to∞ as the basin of∞ and denote it by Bas(∞).
More generally, for p ∈ Ĉ we shall use the notation

Bas(p) =
{
z ∈ Ĉ | fn(p)→ p

}
.

If p is a periodic point of of period m, we can extend this definition as

Bas(p) =
⋃

0≤j<m

{
z ∈ Ĉ | fn+j(p)→ p

}
,

or, equivalently, as the union of the basins of each point in the orbit of p under the fm.

Because∞ plays a special role for polynomials maps f(z), it is common and useful to define
the filled Julia set of f as

Kf = Ĉ r Bas(∞) = {z ∈ C | fn(z) is bounded} .
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FIGURE 3.1. For f(z) = z2, the Julia set
Jf is the unit circle (black), and the Fatou
set has two components: Bas(∞) (red and
orange) and Bas(0) (blue).

FIGURE 3.2. Julia and Fatou sets for
f(z) = z2 − 1/2. As in Figure 3.1, the
Fatou set Ff consists of two components shown
in reds and blues and Jf is in black, forming the
boundary between the two components of Ff .

It is worth noting that for f(z) = z2, we can change coordinates to interchange the roles of∞
and 0: 1/f(z) = f(1/z).

Bas(∞)
f //

1/z
��

Bas(∞)

1/z
��

Bas(0)
f // Bas(0)

That is, f acting on Bas(0) is holomorphically conjugate to f on Bas(∞) via z 7→ 1/z. Note also
that f ′(0) = 0, f ′(1) = 2, and the derivative at∞ is also 0 (in the 1/z coordinate chart).

THE MAP z 7→ z2 + ε. Now let’s change things a little, and consider f(z) = z2 + ε. How does
this affect the dynamics?

• We still have three fixed points in Ĉ:
∞ (with derivative 0), α = (1−

√
1− 4ε)/2, and β = (1 +

√
1− 4ε)/2.

• For |z| large (i.e, near∞), we still have fn(z) → ∞, and (as long as ε is not too big), for
z near α, we have fn(z)→ α.
• Also as in the case of z2, β is a repelling fixed point (since we have |f ′(β)| = |2β| > 1).

As such, it lies in the Julia set Jf .
• Futhermore, (with a bit more effort) we can show that we have a conformal map φ so that

Basf (∞)
f //

φ

��

Basf (∞)

φ

��
D z 7→z2 // D

However, things are a little more complicated near the fixed points α and β.
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In a neighborhood U of the attracting fixed point α, we have a conformal map φ so that

U
f //

φ
��

U

φ
��

C
z 7→f ′(α)z

// C
This neighborhood U cannot include 0, since f is not one-to-one on any neighborood of 0. This

means we cannot hope to extend the local conjugacy above to the whole of Bas(α), unlike in the
case of Bas(∞).

One can show that in this case, the Julia set (which is the complement of Bas(α) ∪ Bas(∞)) is
a Jordan curve with Hausdorff dimension greater than one. See Figure 3.2.

4. SOME HISTORY

The study of the iteration of complex analytic functions began more than a century and a quarter
ago. In the 1870s, Ernst Schröder [Sch70, Sch71] investigated the convergence of iterative algo-
rithms for solving equations, with a particular interest in the convergence of Newton’s method,
which corresponds to the iteration of the function Nf (z) = z − f(z)/f ′(z). He discovered that
a root ρ of f corresponds to a super-attracting fixed point of Nf ; this led him to generalize New-
ton’s method to other numerical methods. In addition, Schröder showed that Newton’s method for
f(z) = z2 − 1 converges globally in the right half-plane to the root 1, in the left half-plane to −1,
and observed sensitive dependence to initial conditions along the imaginary axis. Later, Arthur
Cayley independently (and via quite different methods) obtained similar results in [Cay79]. While
both Cayley and Schröder had hopes of extending their understanding to higher degree polyno-
mials, they were unable to do so. Figure 4.1 might give an idea as to the source of some of their
difficulties.

Later, Gabriel Kœnigs [Kœ84] greatly extended Schröder’s work to further generality, studying
the Schröder functional equation φ(f(p)) = f ′(p)φ(p) in the neighborhood of a fixed point p.
Kœnigs was able to show that the a mapping f was locally conjugate to multiplication by its
derivative at the fixed point p, in the case where |f ′(p)| was not 1 or 0. The more complicated case
of f ′(p) a root of unity was studied 1897 by Leau [Lea87], and the case of f ′(p) = 0 was treated
by Böttcher in 1904 [Böt04]. (Böttcher was one of the first, if not the first, researcher concerned
with developing a general, global theory of iteration of rational maps.) The very difficult cases
where |f ′(p)| = 1 with f ′(p) not a root of unity were not understood until the work of Cremer in
1927 [Cre27] and Siegel in 1942 [Sie42]. We will summarize these results in Section 8.

In the time immediately after World War I, Pierre Fatou [Fat17, Fat19] and Gaston Julia [Jul18]
laid down the foundations of complex dynamics, looking at the theory of iterated rational functions
from a global point of view. Both of the had recently encountered Montel’s theory of normal fami-
lies [Mon12, Mon27] and realized its importance to the theory. Both Fatou and Julia independently
proved that the domain of normality must either be empty, or have one, two, or infinitely many
components. Each showed that Julia sets are typically fractal, and clearly were able to visualize
and understand the very complicated structure of Julia sets, studying and explaining complicated
behavior.

The huge amount of interest in the field of iteration of functions of one complex variable, led by
the work of Fatou and Julia, continued until the 1930s when it inexplicably faded into obscurity.
Although a few important mathematicians worked in this field during that time, it wasn’t until the
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FIGURE 4.1. The dynamics of Newton’s method for the polynomial z3− 1. The basins
of each of the three roots are colored in shades of blue, green, and orange; the Julia set
is the boundary between the colors.

1980s that it revived, probably due to the advent of accessible computers which enabled others to
visualize the extraordinary beauty and complexity that Julia and Fatou obviously understood.

5. NORMAL FAMILIES

The key tool that enabled Fatou and Julia’s breakthrough was their realization of the relevance
of Montel’s work on normal families to the theory of iteration.

Definition 5.1 (Normal family). Let U be an open subset of Ĉ and F = {fi | i ∈ I} be a family of
meromorphic functions indexed by I and defined on U with values in Ĉ. The family F is a normal
family if every sequence fn contains a subsequence fnj which converges uniformly on compact
subsets of U .

Arzela’s theorem gives us an equvialent, and often more useful, condition for checking normal-
ity. If X is a metric space with metric d, a family of functions {fi :X → X} is equicontinuous if
for every ε > 0, there exists δ > so that d(x, y) < ε implies d(fi(x), fi(y)) < δ for all i.

Theorem 5.2 (Arzela). A family of meromorphic functions
{
fi :U → Ĉ

}
is normal if and only if

it is equicontinuous on every compact subset of U .

Corollary 5.3. If a family of holomorphic functions {fi :U → C} is is locally uniformly bounded,
then it is a normal family.

The concept of normal families enables us to define the Julia set Jf and the Fatou set Ff .

Definition 5.4. A point z is in the Fatou set for f if there is a neighborhood U of z such that the
family of iterates {fn|U} is normal. The complement of the Fatou set is called the Julia set.
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If p is a periodic point of period n, the multiplier λ of the periodic orbit is λ = (fn)′(p); by the
chain rule, this is the product of the derivatives of f along the periodic orbit.

Definition 5.5. A periodic orbit p with multiplier λ is

• superattracting if λ = 0,
• attracting if 0 < |λ| < 1,
• neutral if |λ| = 1, and
• repelling if |λ| > 1.

The next result follows easily from the definitions and Arzela’s theorem.

Proposition 5.6. If p is an attracting or superattracting periodic point, then Bas(p) ⊂ F .
If p is a repelling periodic point, then p ∈ J .

The Fatou set is sometimes called “the domain of normality” or “the domain of equicontinuity.”

Corollary 5.7. The Fatou set F is an open set which is completely invariant. That is, if z ∈ F ,
then f(z) ∈ F and f−1(z) ⊂ F .

The Julia set J is a completely invariant and compact set in Ĉ.

Proof. The fact that F is open follows immediately from the definition. We have the invariance of
Ff since f is a continuous, open mapping. Since J is the complement of a completely invariant,
open set, its invariance and compactness follows. �

A few examples of J and F for polynomials with attracting periodic points are shown in Fig-
ure 5.8.

While the previous examples have all had attracting periodic orbits, for many polynomials, all
finite periodic orbits are repelling. As examples, consider f(z) = z2 − 2 or f(z) = z2 + i.

Since infinity is always an attracting fixed point for a polynomial, we have Bas(∞) ⊂ F . But if
all orbits in C are repelling, there can be no other components of F . That is, the filled Julia set is
equal to the Julia set, i.e. K = J . In such a situation, if J is connected it will be a dendrite. See
Figure 5.9.

In the case of a polynomial where the Julia set is not connected, it consists of infinitely many
components. We will examine this case shortly.

6. THE LOCAL THEORY

As mentioned in Section 4, the behavior in a neighborhood of a fixed point or periodic point
was, in most cases, well-known to Fatou, Julia, and their predecessors. In this section, we briefly
address those situations.

BÖTTCHER COORDINATES. In the case where f(z) is a polynomial, we have Bas(∞) ⊂ F .
Furthermore, since polynomials have no poles, Bas(∞) is a completely invariant subset of the
Fatou set.
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FIGURE 5.8. Pictured are Jf (in black) and Ff (in reds and blues) for several examples.
(top left) “The basilica” corresponds to f(z) = z2 − 1, and has an attracting period 2
orbit.
(top right) “The airplane”, which has an attracting period 3 orbit.
(bottom left)“Douady’s rabbit”, also has an attracting period 3 orbit.
(bottom right) A map with an attracting period 72 orbit.

FIGURE 5.9. The Julia sets for z2 − i and the limit of period doubling
(z2 − 1.4011552 . . .), which are connected but have no attracting periodic orbits.
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For |z| large, f(z) is conjugate to w 7→ wd, where d is the degree of f . Let U be a neighborhood
of∞; there is a holomorphic map φ so that

U
f //

φ
��

U

φ
��

Ĉ r D
w 7→wd // Ĉ r D,

where d is the degree of the polynomial f .1

We now explain how to extend this conjugacy to a larger neighborhood. Choose r large so that
A0 = φ−1

(
Drd rDr

)
is contained in U . Here Dr denotes the disk of radius r centered at the

origin. Now define A1 = f−1(A0). As long as there is no critical point of f in A0, the map
f :A1 → A0 will be a d-fold covering map.

A
0

A
1

A
2

w
d

88

U
φf

We can extend the conjugacy φ to U ∪A1 by setting φ(z) = φ(f(z))1/d
k

, where we take care to
choose the appropriate branches of the inverses. There is no problem doing this, since both maps
are covering maps. This process can be continued inductively as long as Ak does not contain a
critical point of f . This gives us a set of coordinates on {∞} ∪

⋃∞
k=0Ak; these are usually called

Böttcher coordinates.

The preimages of curves of constant radius under φ are called equipotentials; the preimage of
the radial line te2πiθ (t > r0) is called the external ray of angle θ (where θ is measured in turns);
we denote it byRθ, and useRθ(t) as a parameterization, with φ(Rθ(t)) = te2πiθ.

If the orbits of all critical points for the polynomial f are bounded, these coordinates will extend
to all of Bas(∞). Even in the case where a finite critical value lies in Bas(∞), equipontentials and
all but a countable number of external rays can be defined on the whole of Bas(∞), as we shall
see shortly.

If limt→1Rθ(t) exists, we say that the ray Rθ lands at a point z in the Julia set. If all rays land,
then the Julia set must be locally connected (since then we have φ−1 extending as a continuous
mapping from D to Bas(∞)).

It should be apparent that the previous construction can be immediately adapted to the situation
where we have a fixed (or periodic) point p with f ′(p) = 0. In this situation, the mapping will

1More precisely, we set φ(z) =
(
limk→∞ fk(z)

)1/dk

.
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f

φ

w
d

FIGURE 6.1. Böttcher coordinates on Bas(∞), with equipotential lines and external
rays shown.

FIGURE 6.2. On Bas(∞), preimages of the annulusA0 (as described earlier) are shown,
where points z for which fn(z) ∈ A0 has positive imaginary part are colored in shades
of red, and those where Im(fn(z)) < 0 are colored green. This coloring enables one to
read off equipotentials and external angles of the form p/2n.
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be conjugate to wk, where k is the smallest integer such that the kth derivative f (k)(p) is nonzero
(k ≥ 2). In this case, the corresponding rayR is called an internal ray.

For all points z ∈ Bas(∞), the escape rate (|φ(z)|) is well-defined, since we have

|φ(z)| =
(

lim
k→∞
|fk(z)|

)1/dk
,

and the dth root is unambiguous for non-negative numbers.
This enables us to define the Green’s function for the filled Julia set Kf (sometimes also called

the canonical potential function) as

Gf (z) =

{
log |φ(z)| z 6∈ Kf
0 z ∈ Kf

.

One sees easily that Gf is continuous everywhere and harmonic, and that Gf (f(z)) = dGf (z).
Level curves Gf (z) = constant > 0 are equipotentials for f ; observe that f sends one equipo-

tential to another equipotential. While we won’t go into details here, one can use Gf to define a
measure on the Julia set which corresponds to the harmonic measure on Kf .

Observe that if there is a critical point which lies in Bas(∞), we cannot extend the conjugacy
φ without ambiguity to the entire basin of infinity, since there will be at least two rays which land
at the critical point. (Of course, we should not expect to be able to extend the conjugacy, since wd

has no non-zero, finite critical points. Instead, the conjugacy will instead correspond to a Blaschke
product.)

However, the mapping φ can be analytically continued to the whole of Bas(∞) to obtain a
conformal isomorphism between Bas(∞) and Ĉ r D.

Consider f(z) = z2 + c with c < −2. In this case, fn(0) → ∞, so 0 ∈ Bas(∞). The equipo-
tential Gf (z) = log |c| will be an (analytic) circle, but its preimage Gf (z) = log |c|/2 will be
will branch at the origin, making a figure-8 shape. Note that the two preimages of the ray passing
through cmust cross at the origin (since it is a critical point), although all other rays extend without
ambiguity to the interior of the figure-8. Of course, there will be two more rays which branch at
the pre-image of 0, and so on. See Figure 6.3.

Observe the close similiarity to the classical construction of a Cantor set: the Julia set must lie
in the interior of the nested figure-8 shapes. If these figure-8s contract to points, the result will be
homeomorphic to a Cantor set.

This is indeed what happens if all the critical points of f lie in the basin of ∞. For quadratic
polynomials, since there is only one critical point, we have the following.

Lemma 6.5 (Dichotomy for quadratic polynomials). Let f(z) be a quadratic polynomial with
critical value c.

• If the orbit of c is unbounded, then Jf is homeomorphic to a Cantor set.
• If the orbit of c is bounded, then Jf is connected.

Using this dichotomy, one can define the Mandelbrot set as

M =
{
c ∈ C | the orbit of 0 under z 7→ z2 + c is bounded

}
.

Of course, for a polynomial of degree three or higher there can be an intermediate case where
the Julia set consists of infinitely many components but is not a Cantor set; see Figure 6.4.
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FIGURE 6.3. Two quadratic Julia sets homeomorphic to the Cantor set.

FIGURE 6.4. Another quadratic Cantor Julia set, and a cubic with only one critical point
which escapes.

7. MONTEL’S THEOREM AND ITS CONSEQUENCES

One powerful tool to understanding the Julia set J is Montel’s theorem.

Theorem 7.1 (Montel). Let F be a family of meromorphic functions defined on a domain U . If
there exist three points a, b, c ∈ Ĉ so that

{a, b, c} ∩
( ⋃
f∈F

f(U)
)

= ∅,

then F is a normal family.

Corollary 7.2. Let z ∈ Jf . Then for any neighborhood U of z, the set EU = Ĉ r
⋃
n>0 f

n(U)
contains at most two points.

The points in EU are called exceptional points.
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Note that for a polynomial p(z), ∞ is an exceptional point. We have p−1(∞) = {∞}. Fur-
thermore, since∞ is a superattracting point, Bas(∞) ⊂ F , and the Julia set J lies in a bounded
region of C. Since p has no poles, p(C) = C; thus∞ is an exceptional point.

Theorem 7.3. Suppose z ∈ Jf , and let Ez =
⋃
EU , where U ranges over all neighborhoods of z.

Then

• If Ez contains exactly one point, then f is conjugate to a polynomial.
• If Ez contains two points, then either f is conjugate to zd or 1/zd, where d is the degree

of f .

In both cases, Ez does not depend on the choice of z ∈ J , and Ez ⊂ F .

The proof follows from conjugating f by a Möbius transformation which moves Ez to {∞} (in
the first case) or {0,∞} in the second. An easy calculation finishes the proof.

Corollary 7.4. If Jf has nonempty interior, then Jf is the entire Riemann sphere Ĉ.

Proof. Suppose there is a domain U ⊂ J . Since J is forward invariant,⋃
n>0

fn(U) ⊂ J and
⋃
n>0

fn(U) = Ĉ r Eu.

But J is closed and Eu contains at most two points, so J = Ĉ. �

The map

L(z) =
(z2 + 1)2

4z(z2 − 1)

is known as a Lattès’ example. L(z) corresponds to multiplication by 2 on the torus T2 via the
Weierstrass ℘ function. Furthermore, the Julia set of L is all of Ĉ. For further details, see [Mil06],
for example. Other examples of rational maps where J is the entire Riemann sphere can be found
in [Ree84].

Corollary 7.5. If z is any point in the Julia set of f , then preimages of z are dense in Jf :

Jf =
⋃
n≥0

f−n(z).

Proof. Observe that for any w ∈ Ĉ which is not an exceptional point, the preimages of w accumu-
late on the Julia set:

Jf ⊂
⋃

f−n(w).

This follows since for any z ∈ J and any neighborhood U of z, we have w ∈ fn(U) for some n.

Since J is a completely invariant set and J is closed, we also have⋃
f−n(z) ⊂ J for any z ∈ J .

�

Theorem 7.6. The Julia set is a perfect set. That is, it has no isolated points.
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Proof. Let z ∈ J . We can find another point a ∈ J so that fn(a) = z for some n, but a is not
a forward image of z. (If z is not periodic, any inverse of z will do. If z is periodic of period m,
consider g = fm, and choose a so that g(a) = z but a 6= z.)

Now let U be a neighborhood of z. Since a ∈ J , a is not an exceptional point, so there is a
k > 0 so that fk(U) contains a.

f

f

z=f (a) k
n

n

b

f (z)

k

kU

a=f (b)

Let b be another point of U for which fk(b) = a. Then b 6= z since z is not in the forward orbit of
a. Since J is completely invariant, a and b are in J . Thus, every point z of J is an accumulation
point of other points of J . �

We now show that the Julia set is the closure of the repelling periodic points.

Lemma 7.7. J ⊂ {periodic points}.

Proof. We give the proof for polynomials p :C→ C; a similar idea works for rational functions.
Let J0 be the Julia set with any critical values of p removed, and let w ∈ J0. Since J0 contains

no critical values, there is a neighborhood U of w and a local inverse S :U → Cr U . Let

gn(z) =
pn(z)− z
S(z)− z

, n > 0.

Observe that gn is bounded and takes the values 0 and 1 only on periodic orbits z. Consequently,
the family {gn} is normal if and only if {pn} is normal2.

But since w ∈ J , the family {pn} and hence {gn} cannot be normal on any neighborhood of
w. But unless there is a sequence of periodic orbits accumulating to w, the family {gn} omits the
values 0, 1, and∞ on a neighborhood of w, contradicting Montel’s theorem. �

To prove the inclusion the other way, we show that there are only finitely many non-repelling
orbits. Then the previous lemma, coupled with the fact that J is a perfect set, will give the result.

Let B(p) denote the immediate basin of p, that is, the connected component of Bas(p) which
contains p.

Theorem 7.8. If p is an attracting fixed point, then B(p) contains a critical value.

Proof. Suppose there is no critical value in B(p). Then if U is a simply connected neighborhood
of p contained in B(p), we can construct a local inverse S1 for f |U so that S1(p) = p.

2 To adapt this proof to a rational function R(z), instead one sets J0 to be the Julia set with infinity, all critical
values, and all poles of R removed. Then, for a neighborhood U of a point w ∈ K, let S1, S2, and S3 be three local
inverses of R2 and take

gn(z) =
Rn(z)− S1(z)

Rn(z)− S2(z)

S3(z)− S2(z)

S3(z)− S1(z)
.

The family {gn} is normal if and only if {Rn} is normal.
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Observe that U1 = S1(U) is a simply connected subset of B(p), so we can repeat the pro-
cess using U1 to construct S2. Indeed, since there is no critical value in B(p), it can be re-
peated infinitely often, giving a family {Sk} on U , which is normal (by Montel’s theorem) since
Sk(U) ⊂ B(p) ⊂ F .

But p is a repelling fixed point for each Sk, so the family cannot be normal. �

We can extend this result to the a count on attracting periodic orbits: if p is of period k, apply
the theorem to fk.

From Theorem 7.8, we get an upper bound of 2d − 2 on the number of attracting orbits of
a rational map f of degree d. Fatou and Julia showed (by means of a perturbation argument)
that the number of neutral cycles is at most 4d − 4. However, in 1987 Shishikura [Shi87] used
quasiconformal surgery techniques to give the sharp bound of at most 2d−2 non-repelling orbits for
any rational map of degree d. This bound is commonly called the Fatou-Shishikura inequality.
Applying the Fatou-Shishikura inequality gives the following.

Theorem 7.9. The Julia set Jf is the closure of the repelling periodic orbits of f .

Proof. To prove this, we merely combine the fact that J ⊂ {periodic points} with the fact that
there are only finitely many non-repelling periodic orbits. Since J is a perfect set, each point in it
must be the accumulation of some sequence of repelling periodic points. �

8. NEUTRAL PERIODIC ORBITS

We have seen that repelling periodic orbits always lie in the Julia set, and that attracting orbits
lie in the Fatou set. If p is part of a periodic cycle with multipler on the unit circle, p may either lie
in the Julia set or in the Fatou set.

Theorem 8.1. Let p be a fixed point with multiplier f ′(p) = λ, |λ| = 1. Then p ∈ F if and
only if the Schröder functional equation (SFE) φ(f(z)) = λφ(z) has an analytic solution in a
neighborhood of p.

Proof. If (SFE) has a solution in a neighborhood of p, then p ∈ F follows immediately.
Conversely, suppose p ∈ F and let U be the maximal domain such that p ∈ U and U ⊂ F .

Since U is disjoint from J , its complement in Ĉ contains more than three points, so the universal
cover Ũ is conformally equivalent to D.

Thus, we have a cover ϕ :D→ U with ϕ(0) = p, and we can lift f to f̃ :D→ D with f̃(0) = 0.
Since |f̃ ′(0)| = |λ| = 1, then by the Schwarz lemma, f̃(z) = λz. The mapping ϕ is the solution φ
to (SFE). �

Corollary 8.2. If p is a periodic point with multiplier λ a root of unity, then p ∈ J .

Proof. Replacing f by an iterate if necessary, we may assume p is a fixed point. Suppose λk = 1
and p ∈ F . Then if (SFE) has a solution φ in some neighborhood U of p, we have φ ◦ fk ◦ φ−1
is the identity on U . But since f is analytic, it is the identity on Ĉ, and thus f is of degree 1, a
contradiction. �
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FIGURE 8.3. On the left is the “cauliflower” (z 7→ z2 + 1/4) with a cardiod-shaped
attracting petal in green, a repelling petal in violet, and the forward orbits of several
points shown. At right is the “fat rabbit” with attracting petals indicated in green.

Theorem 8.4 (Fatou-Leau flower theorem). Suppose λn = 1 with λj 6= 1 for 1 < j < n. Let
f(z) = λz+ a2z

2 + . . . be analytic in a neighborhood of the origin. If fn 6= Id, there is an integer
k for which there are nk attracting petals bounded by analytic curves which are tangent at the
origin. The union of the petals is forward invariant, and any orbit in a petal is asymptotic to the
origin. Any compact set within a petal converges uniformly to the origin under fn.

In addition, there are nk repelling petals; in each, every orbit eventually leaves the petal (alter-
natively, in each petal there is a branch of the inverse for which the petal is attracting).

ROTATION DOMAINS. In 1942, Carl Siegel [Sie42] found a full measure subset of the unit circle
Λ such that whenever the multiplier at p is in Λ, the Schröder functional equation has a solution,
so p ∈ F .

Theorem 8.5. Let p be a fixed point for f with multiplier λ = e2πiθ, where θ is irrational. Suppose
also there exist constants a and b such that∣∣∣∣θ − p

q

∣∣∣∣ > a

qb
for all rationals

p

q
.

Then (SFE) has a solution and p ∈ F .

The condition above is roughly that “θ is badly approximated by rationals.” For example, the
golden mean 1+

√
5

2
is such a number, as is any number for which the terms in its continued fraction

expansion are bounded. In this case, the topological disk around p on which f is conjugate to an
irrational rotation is called a Siegel disk.

The Julia set of a polynomial with a Siegel disk can be extremely complicated, despite the fact
that the dynamics on the Siegel disk is conjugate to a “simple” rigid rotation. For example, there
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FIGURE 8.6. On the left is the Julia set of a polynomial which has a Siegel disk with a
rotation number of the golden mean (the Siegel disk and its preimages are shown in blue;
the light-dark bands indicate orbits within the Siegel disk). On the right is a rational
map with a Hermann ring with a golden-mean rotation (Bas(∞) is in reds and yellows,
Bas(0) in shades of blue, with the Hermann ring and its preimages shown in black).

are quadratic polynomials with Siegel disks whose Julia set is a non-computable set (see [BY09]),
as well as Julia sets with no interior but non-zero Lebesgue measure (see Section 10).

Related to Siegel disks are Herman rings. A Herman ring is a domain which is conformally
equivalent to an annulus, on which the dynamics is conjugate to an irrational rotation. Thus, a
Herman ring is a subset of the Fatou set. Michel Herman showed their existence in 1979.

Siegel disks and Herman rings are collectively referred to as rotation domains.

Because of the maximum principle, Herman rings cannot occur for polynomials. Shishikura has
shown that the degree of a rational map with a Herman ring must be at least three. For any odd
degree at least 3, we can construct a Blaschke product f which sends the unit circle to itself by
an orientation-preserving diffeomorphism with any desired rotation number ρ. If ρ is Diophantine
(i.e., badly approximated by rationals), then f will have a Herman ring.

For example, the map e2πitz2
z − 4

1− 4z
, with t ≈ 0.6151732, has a Herman ring with rotation

number (
√

5− 1)/2. See Figure 8.6.

CREMER POINTS. The condition of a Diophantine rotation number for the existence of a Siegel
disk is sufficient, but not sharp. For the map z2 + λz, if λ is Brjuno (i.e., if the convergents pn/qn
of λ satisfy

∑
(log qn+1)/qn <∞), then the map will have a Siegel disk about zero.

Yoccoz (see [Hub93], [Yoc95]) showed that this condition is sharp for quadratic polynomials: if
it fails to hold, the map cannot be linearized in a neighborhood of the fixed point. Indeed, it has the
small cycles property: every neighborhood of the origin contains infinitely many periodic orbits.

A point with this property is called a Cremer point, and is of necessity in the Julia set.

We know of no good means of making a picture of a map with a Cremer point, although topo-
logical models exist and such Julia sets are always computable [BBY07] when they have empty
interior (which is necessarily true for quadratics). Julia sets with Cremer points are not locally
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connected sets [Sul83] and can have positive Lebesgue measure (see Section 10). See [BBCO10]
for more details and further references.

9. FATOU-SULLIVAN CLASSIFICATION OF FATOU COMPONENTS

In 1983, Dennis Sullivan [Sul83] classified the possibilities for a Fatou component which is
eventually periodic. While most of these possibilities were known to Fatou and Julia, Sullivan’s
work completed the classification.

Let U be an eventually periodic such a component of the Fatou set. Then, after passing to an
iterate, we can view U as being fixed. There are only four possibilities:

(1) U is the immediate basin of an attracting (or super-attracting) point p.
(2) U is the immediate basin of one petal of a parabolic point.
(3) U is a Siegel disk.
(4) U is a Herman ring.

Furthermore, Sullivan [Sul85] showed that every Fatou component is eventually periodic, that
is, there are no wandering domains for rational maps3.

Theorem 9.1 (Sullivan’s Non-Wandering theorem). Every Fatou component U for a rational map
is eventually periodic. That is, there exist integers n ≥ 0 and p ≥ 1 so that the forward image
fn(U) is mapped onto itself by fp. In particular, it follows that every Fatou component is either a
branched covering or a biholomorphic copy of some periodic Fatou component, which necessarily
belongs to one of the four types described above.

10. A JULIA SET OF POSITIVE MEASURE

Earlier, we noted that either J has no interior or it is the entire Riemann sphere. However,
recently Buff and Chéritat [BC12] showed that there is a quadratic polynomial with a Julia set of
positive measure which is not the entire Riemann sphere.

They did this by constructing a sequence of perturbations of Siegel disks with an increasingly
complicated boundary, such that the loss of measure in the filled Julia set is controlled. The Siegel
disks become “digitated”, with deep channels entering towards the center of the disk. Informative
pictures of the process can be found on Arnaud Chéritat’s web page [Che].

More precisely, Buff and Chéritat showed the following.

Theorem 10.1. Let Pα(z) = e2πiαz + z2. Then

• there exists α such that Pα has a fixed point of Cremer type and JPα has positive measure;
• there exists β such that Pβ has a Siegel disk and JPβ has positive measure.

11. CONCLUSION

In this brief note, I hope I have given you some idea of the beauty and complexity related to
holomorphic dynamics in one variable. Of course, due to limited space many details and interest-
ing, relevant topics were omitted. I hope I have inspired the reader to follow up and learn more
about this vibrant and exciting area of mathematics.

3This result is not valid for transcendental maps, since z + sin(2πz) has a wandering domain.
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