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1. Introduction

This paper develops the foundations of the theory of quasiconformal maps in metric
spaces that satisfy certain bounds on their mass and geometry. The principal message is
that such a theory is both relevant and viable.

The first main issue is the problem of definition, which we next describe. Quasi-
conformal maps are commonly understood as homeomorphisms that distort the shape
of infinitesimal balls by a uniformly bounded amount. This requirement makes sense
in every metric space. Given a homeomorphism f from a metric space X to a metric
space Y , then for x∈X and r>0 set

Hf (x, r)=
sup{|f(x)−f(y)| : |x−y|� r}
inf{|f(x)−f(y)| : |x−y|� r} . (1.1)

Here and hereafter we use the distance notation |x−y| in any metric space.

Both authors were supported in part by the NSF and the Academy of Finland. The first author
is a Sloan Fellow.



2 J. HEINONEN AND P. KOSKELA

Definition 1.2. A homeomorphism f :X→Y is called quasiconformal if there is a
constant H<∞ so that

lim sup
r→0

Hf (x, r)�H (1.3)

for all x∈X.

This definition is easy to state, but not easy to use. It does follow easily from the
definition and classical theorems in real analysis that quasiconformal homeomorphisms
in Euclidean spaces are almost everywhere differentiable. But it is not clear whether,
for instance, the inverse of a given quasiconformal map is quasiconformal; nor is it easy
to ascertain desired stronger properties such as Hölder continuity or the compactness of
a suitably normalized family of quasiconformal homeomorphisms. The difficulties stem
from the fact that (1.3) is a local, infinitesimal condition.

Let us look at a stronger, global requirement.

Definition 1.4. A homeomorphism f :X→Y is called quasisymmetric if there is a
constant H<∞ so that

Hf (x, r)�H (1.5)

for all x∈X and all r>0.

It is not difficult to demonstrate starting from the definition that quasisymmet-
ric homeomorphisms between reasonable spaces enjoy many strong properties: they are
Hölder continuous, inverse maps are quasisymmetric as well, normal families are common
and quasisymmetry carries over to limit homeomorphisms. In fact, much of the classical
quasiconformal theory can be done by directly exploiting condition (1.5), or its local ver-
sions. Quasisymmetric maps made their first official appearance in the 1956 paper [BA]
by Beurling and Ahlfors, who were concerned about maps of the real line, and quasi-
conformal extensions thereof. The concept was later promoted by Tukia and Väisälä, who
introduced and studied quasisymmetric maps between arbitrary metric spaces in [TV].
Recently Väisälä [V5], [V6] has developed a “dimension-free” theory of quasiconformal
maps in infinite-dimensional Banach spaces based on the idea of quasisymmetry. See
also [V2].

It is a fundamental fact that quasiconformal homeomorphisms between Euclidean
spaces of dimension at least two are quasisymmetric; that is, (1.3) implies (1.5) for a
homeomorphism f :Rn→Rn if n�2. (The value of the constant H in (1.5) may differ,
but it only depends on the constant appearing in (1.3) and possibly—this is an open
problem—on the dimension n.) If we assume that f is a diffeomorphism, then this fact
is not overly difficult to establish, albeit still nontrivial. That global bounds can be
obtained without any a priori regularity assumptions is a deep result that reflects certain
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special properties of Euclidean space, worth seeking elsewhere. This result was first
proved by Gehring in [G1] for R2, with a method that extends to higher dimensions;
see [V1] for a full account. For n=1, the statement is false; consider, for example,
f(x)=x+ex.

The problem whether (1.3) and (1.5) are equivalent for a given self-homeomorphism
of a space can be phrased in more intrinsic terms as follows. Let X be a space with
metric d, which we regard as the fixed “conformal” structure on X. Suppose then that
we are given an infinitesimal quasiconformal structure on X. By this we mean a new
metric on X whose balls, at the limit when the radius goes to zero, are not too differ-
ent in shape from the balls in the metric d. Is it then true that these two structures
are globally quasisymmetrically equivalent? In other words, can we recapture the global
quasisymmetric structure of a space from a local or infinitesimal quasiconformal struc-
ture? This question comes up naturally in the quasiisometry classification of negatively
curved spaces. It is known that the quasiisometry type of a negatively curved space
(in the sense of Gromov [GH]) is in many cases determined by the quasisymmetric type
of its boundary; thus we would like to know whether it is already determined by the
infinitesimal quasiconformal type. See the survey article by Gromov and Pansu [GP] for
an excellent discussion. (See also [P3] and [Pau].)

For a long time it was not clear whether this infinitesimal-to-global principle was
valid in spaces that are sufficiently distinct from Rn. In fact, examples of relatively nice
spaces were found where it fails; for instance, one can take X to be R2 and Y to be a
certain smooth hypersurface in R3, cf. [HK1, Example 4.7] or [V2, §5]. As a consequence
of the recent work of Mostow [Mo2], Pansu [P1], [P2], and others, it followed that (1.3)
implies (1.5) for homeomorphisms between the spaces that occur as conformal boundaries
of rank-one symmetric spaces. In particular, Korányi and Reimann [KR1], [KR2] have
conducted a thorough study of the quasiconformal maps on the Heisenberg group, and
a careful treatment of various definitions for quasiconformal maps on the Heisenberg
group is given in [KR2]. The authors showed in [HK1] that (1.3) implies (1.5) in an
arbitrary Carnot group (see §6.2 below), or more generally in the case where X is a
Carnot group and Y is a metric space with similar homogeneity and local connectivity
properties to X. Recently, Margulis and Mostow [MM] established important absolute
continuity properties of quasiconformal maps on general Carnot–Carathéodory spaces.
Their results can be used to derive (semi-)global distortion properties of quasiconformal
maps on those spaces. See also [VG].

One of the main goals of the present paper is to show that the two concepts, quasi-
conformality and quasisymmetry, are quantitatively equivalent in a large class of metric
spaces, which includes all the previously known examples and more. Such spaces are
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discussed next.
The most important tool in the quasiconformal theory is the conformal modulus, or

capacity. This is a global conformal invariant that attaches a real number to each pair
of disjoint continua in a given space. (By a continuum we mean a compact, connected
set.) The crucial property of this invariant in Rn is that it has a uniform lower bound,
which depends only on the dimension n and on the relative position of the two continua.
In the case n=2, this fact was known already to Grötzsch and Teichmüller. For n�3
it was first observed by Loewner [L] in 1959; he used this property of modulus to show
that one cannot map Rn quasiconformally onto a proper subset. In §3, we shall define
a Loewner space to be a space where a similar lower bound for the modulus holds.
Then, in §4, we shall show that a quasiconformal map from a Loewner space X into a
space Y is quasisymmetric, if the Hausdorff measures of X and Y are both Ahlfors–David
regular of the same dimension larger than one, and if Y satisfies a (necessary) linear local
connectivity condition.

Let us recall the definition of an Ahlfors–David regular space.

Definition 1.6. A metric space X is said to be Ahlfors–David regular of dimension
Q>0 if there is a constant C�1 so that

C−1RQ �HQ(BR)�CRQ (1.7)

for all balls BR in X of radius R<diam X. Here, and hereafter, HQ denotes the Q-
Hausdorff measure in the metric space X. We often call X simply Q-regular, or just
regular , if the dimension is not important to the discussion.

It is easy to see that X satisfies (1.7) if it satisfies a similar condition for some Borel-
regular measure µ; only the constant C may change slightly. David and Semmes [DS2],
[DS3] have conducted an extensive study of regular spaces, usually furnished with some
additional properties. Regular spaces are particular examples of spaces of homogeneous
type in the sense of Coifman and Weiss [CW]. Although a lot of harmonic analysis can
be done in homogeneous spaces, they are usually too general for the kind of questions
we want to address in this paper; for us, it is important that the spaces have good
connectivity properties. (This is not to say that many of our results, especially in §4,
would not hold in more generality, or when differently interpreted; there are interesting
questions left open in this respect. Our techniques fail if the spaces admit few or no
rectifiable curves.)

The main new point introduced in [HK1] was that one can use modulus estimates
to study maps even without a differentiable structure of any kind in the underlying
space. The usual analytic change of variables procedure was replaced there by a discrete,
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combinatorial argument. In the end, all one needs is a lower bound for the modulus.
This idea is pursued further here, and the main question is: what spaces admit such a
lower bound for the modulus? Equivalently, in our present terminology, what spaces are
Loewner spaces? The answer will be given in terms of a Poincaré inequality.

Recall that the usual Poincaré inequality in Rn implies, by way of Hölder’s inequality,
that

inf
a∈R

∫
B

|u−a| dx�C(n)(diam B)n

(∫
B

|∇u|n dx

)1/n

(1.8)

for any bounded smooth or Lipschitz function u in a ball B (see [GT, p. 164]). We shall
formulate a version of (1.8) in a general, rectifiably connected metric space. We then
show (see §5) that if X is a proper and regular space that in addition satisfies a local
quasiconvexity condition, then X is a Loewner space if and only if X admits a Poincaré
inequality. (A proper space is one whose closed balls are compact; for the quasiconvexity
condition, see §2.15.)

The search for Poincaré-type inequalities in various situations has been intensive
in recent years. Spaces that admit the kind of Poincaré inequality we are looking for
include Riemannian manifolds of nonnegative Ricci curvature and Euclidean volume
growth, as well as various Carnot-type geometries. See [Bu], [DS1], [Gr], [J], [MSC],
[SC], [VSC]. Semmes [S4] has shown recently that any n-regular, complete metric space,
that is also an oriented (homology) n-manifold satisfying a linear local contractibility
condition, admits a Poincaré inequality. (Added in December 1997: For an interesting
new geometry which admits a Poincaré inequality, see the recent paper by Bourdon and
Pajot [BP].) We shall show in this paper that any connected, finite simplicial complex
admits a Poincaré inequality if it is of pure dimension n>1 and if it has the (obviously
necessary) property that the link of every vertex is connected (i.e. a removal of a point
does not locally disconnect the space).

Consequently, in all these spaces we can go from an infinitesimal quasiconformal
structure to a global one. Note that in the case of a Riemannian manifold, quasiconformal
maps are always quasisymmetric in small coordinate charts by Gehring’s theorem (if the
dimension is larger than one), but in general there need not be any control over the global
distortion. Our result says that we can control the global distortion in the presence of
appropriate volume bounds and a Poincaré inequality. Recall that certain Sobolev–
Poincaré inequalities carry information about the isoperimetric profile of a space, which
is closely connected with the quasiconformal theory [GLP]. The inequalities we need in
this paper are weaker than those related to isoperimetric inequalities.

There are many important cases where the existence of a Poincaré inequality is
not known. If M̃ is the universal cover of a negatively curved compact Riemannian
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n-manifold M , then the ideal boundary ∂M̃ of M̃ is topologically a sphere of dimen-
sion n−1. One would like to understand the metrics on ∂M̃ where the fundamental group
π1(M) acts uniformly quasiconformally. (Note that such metrics always exist [GH].)
A particularly interesting case is related to the problem of recognizing the fundamental
groups of compact hyperbolic three-manifolds. A long standing conjecture is that every
negatively curved or Gromov hyperbolic group whose boundary is a two-sphere is such
a group. Cannon, Floyd, Parry, and Swenson [C], [CFP], [CS] have showed that this
conjecture can be solved affirmatively if a certain combinatorial modulus on the bound-
ary two-sphere has roughly Euclidean behavior. This is a Loewner-type requirement.
In [HK1], the authors employed a discrete modulus similar to that of Cannon et al.,
but in the present paper the concepts are defined in continuous terms. Many arguments
below, however, can be seen as combinatorial.

It remains an open problem precisely under what circumstances the Loewner con-
dition is a quasisymmetric invariant. We conjecture that the Loewner property is a
quasisymmetric invariant of a locally compact Q-regular space for Q>1. In §8, we prove
this under an additional hypothesis. (After this paper was submitted, Tyson [Ty] verified
the conjecture; see Remark 8.7 (a).)

After this study of definitions, we come to the second main issue of the paper, which
is the actual theory of quasiconformal maps between spaces with appropriate control on
mass and geometry. A regular metric space X that admits a Poincaré-type inequality
appears to be an amenable environment where the quasiconformal theory works much
in the same way it does in Euclidean space. We shall show that a quasiconformal map
between two such spaces is not only absolutely continuous in that it preserves sets of
measure zero, but it induces an A∞-weight in the sense of Muckenhoupt. Moreover,
under similar assumptions, quasiconformal maps are absolutely continuous on Q-modulus
almost every curve. The assumptions are general enough to encompass the results of
Pansu [P2], and Margulis and Mostow [MM] on absolute continuity on lines. We also
show that a quasiconformal map between such spaces belongs to a Sobolev space of
higher degree than a priori is expected. These results extend the celebrated theorems of
Bojarski [Bo] in R2 and Gehring [G3] in Rn. By a Sobolev space, we mean a space as
defined either by Haj�lasz [Ha], or by Korevaar and Schoen [KS].

Finally, we should warn the reader that what we call quasisymmetry in Definition 1.4
is called weak quasisymmetry by Tukia and Väisälä in [TV]; they demand that quasisym-
metric maps satisfy a stronger distortion condition, valid for points in all locations. See
(4.5) for the precise definition. We chose to ignore this difference in this introduction,
for we shall deal only with metric spaces where these two definitions of quasisymmetry
are quantitatively equivalent. This point is clarified later in §4. Also, in the case of
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compact or bounded spaces, the concept of a quasi-Möbius map as defined by Väisälä
in [V3] would appear more natural than that of a quasisymmetric map. (Recall that
the conformal automorphism group of the unit disk is not uniformly quasisymmetric in
the Euclidean metric.) However, for simplicity of exposition we have decided not to deal
with quasi-Möbius maps in this paper.

Some of the results of this paper were announced in [HK2].

Acknowledgement. We wish to express our gratitude to Fred Gehring for his con-
tinuous advice, encouragement and interest in our work, past and present. We dedicate
this paper to him with admiration and appreciation.

We would also like to thank Stephen Semmes for numerous useful discussions related
to the topics of this paper, Jussi Väisälä for helpful information about continua in metric
spaces, and Toni Hukkanen, Juha Kinnunen, Paul MacManus and Hervé Pajot for their
comments on the manuscript.

Special thanks go to the referee, whose extremely careful reading of the manuscript
led to many clarifications and improvements in the text.

2. Modulus and capacity in a metric space

In this section, we first recall the definition for the modulus of a curve family in a metric
measure space (X,µ). Then we introduce the concept of capacity between two continua
in X. The latter requires an appropriate substitute for the gradient of a smooth or
Lipschitz function. This done, we proceed to show that the two notions are equal in
certain important situations. Just as in Rn, the modulus is more general and flexible in
use, while it is easier to give estimates for the more concrete capacity.

2.1. Definitions and conventions. All metric spaces in this paper are assumed to be
rectifiably connected and all measures are assumed to be locally finite and Borel regular
with dense support. A metric space is called rectifiably connected if every pair of two
points in it can be joined by a rectifiable curve (see §2.2 below). We shall denote by
(X,µ) such a metric measure space. We do not assume in general that X be locally
compact or complete.

Open balls are written as B(x, r), and if B=B(x, r), then CB=B(x,Cr) for C>0.
The closure of a set A is denoted Ā.

2.2. Curves and line integrals in a metric space. We recall the basic concepts of
rectifiability and line integration in a metric space. Let X be a metric space as in §2.1.

By a curve we mean either a continuous map γ of an interval I⊂R into X, or the
image γ(I) of such a map. We usually abuse notation by writing γ=γ(I). If I=[a, b] is
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a closed interval, then the length of a curve γ: I→X is

l(γ)= length(γ)= sup
n∑

i=1

|γ(ti)−γ(ti+1)|,

where the supremum is over all finite sequences a=t1�t2�...�tn�tn+1=b. If I is not
closed, then we set

l(γ)= sup l(γ|J),

where the supremum is taken over all closed subintervals J of I. We call a curve γ

rectifiable if its length is a finite number. Similarly, a curve γ: I→X is locally rectifiable
if its restriction to each closed subinterval of I is rectifiable.

Any rectifiable curve γ: I→X has a unique extension �γ to the closure Ī of I; we
ignore the fact that the values of �γ at the endpoints of I may not lie in X but rather
in the completion of X. If I is unbounded, the extension is understood in a generalized
sense. From now on, if γ is rectifiable, we automatically consider its extension �γ and do
not distinguish these two curves in notation. For any rectifiable γ there are its associated
length function sγ : I→[0, l(γ)] and a unique 1-Lipschitz continuous map γs: [0, l(γ)]→X

such that γ=γs�sγ . The curve γs is the arc length parametrization of γ.
If γ is a rectifiable curve in X, the line integral over γ of each nonnegative Borel

function �:X→[0,∞] is ∫
γ

� ds=
∫ l(γ)

0

��γs(t) dt.

If γ is only locally rectifiable, we set

∫
γ

� ds=sup
∫

γ′
� ds,

where the supremum is taken over all rectifiable subcurves γ′ of γ. If γ is not locally
rectifiable, no line integrals are defined.

A detailed treatment of line integrals in the case X=Rn can be found in [V1,
Chapter 1]. The general case is only ostensibly different, cf. [Fe, 2.5.16]. The length of
a curve γ as defined above agrees with its 1-Hausdorff measure in X provided the map
γ: I→X is injective [Fe, 2.10.13].

2.3. Modulus of a curve family. Suppose that (X,µ) is a metric measure space as
in §2.1. Let Γ be a family of curves in X and let p�1 be a real number. The p-modulus
of Γ is defined as

modp Γ= inf
∫

X

�p dµ,
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where the infimum is taken over all nonnegative Borel functions �:X→[0,∞] satisfying∫
γ

� ds� 1 (2.4)

for all locally rectifiable curves γ∈Γ. Functions � satisfying (2.4) are called admissible
(metrics) for Γ. Note that by definition the modulus of all curves in X that are not
locally rectifiable is zero. We observe that

modp(∅)=0, (2.5)

modp Γ1 �modp Γ2, (2.6)

if Γ1⊂Γ2, and

modp

( ∞⋃
i=1

Γi

)
�

∑∞
i=1 modp Γi. (2.7)

Moreover, if Γ0 and Γ are two curve families such that each curve γ∈Γ has a subcurve
γ0∈Γ0, then

modp Γ�modp Γ0. (2.8)

These properties of modulus are easily proven, cf. [Fu], [V1, pp. 16–17]. They will be
used repeatedly, and usually without extra fanfare, throughout this paper.

Often one would like to restrict the pool of admissible metrics to, say, continuous
or bounded functions �. Such a reduction generally leads to a different concept. For
instance, the n-modulus of the family of all (nonconstant) curves in Rn that pass through
a given point is zero, but there are no admissible bounded metrics for this family. The
only concession that can be made is to consider lower semicontinuous functions, for it
follows from the Vitali–Carathéodory theorem in real analysis that every function f in
Lp(X) can be approximated in Lp(X) by a lower semicontinuous function g with g�f .
This requires X to be locally compact; see [Ru, p. 57].

The triple (E,F ;U) will denote the family of all curves in an open subset U of X

joining two disjoint closed subsets E and F of U , cf. §2.11. For brevity, (E,F ;X)=
(E,F ).

2.9. Very weak gradients. Let U be an open set in X and let u be an arbitrary real-
valued function in U . We say that a Borel function �:U→[0,∞] is a very weak gradient
of u in U if

|u(x)−u(y)|�
∫

γxy

� ds (2.10)

whenever γxy is a rectifiable curve joining two points x and y in U . Clearly, a very weak
gradient is not unique, and �=∞ is always a very weak gradient. As an example, if X is
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a Riemannian manifold, for instance Rn with its standard metric, and if u is a smooth
function on X, then �=|∇u| is a very weak gradient of u. It is also not difficult to see
that if � is any very weak gradient of a smooth function u in Rn, then |∇u|�� almost
everywhere.

Recall that a mapping u between metric spaces is Lipschitz if there is a constant
C�1 so that

|u(x)−u(y)|�C|x−y|

for all points x and y in the domain of u; moreover, u is locally Lipschitz if every point
in the domain has a neighborhood where u is Lipschitz. If u is a Lipschitz function on
a Riemannian manifold X, it is differentiable almost everywhere, and the function |∇u|
can be redefined everywhere on X so that it becomes a very weak gradient of u. And,
as in the case of a smooth function, |∇u| is almost everywhere less than or equal to any
given very weak gradient of u.

If X is a Carnot group, then |∇0u|, the length of the horizontal differential of a
smooth function u, serves as a very weak gradient of u (see §6.2 and the references there
for the terminology). Conversely, if � is any very weak gradient of such a function u,
then |∇0u|�� almost everywhere, cf. [HK1, proof of Proposition 2.4].

2.11. Capacity. Suppose that E and F are closed subsets of an open set U in X.
The triple (E,F ;U) is called a condenser and its p-capacity for 1�p<∞ is defined as

capp(E,F ;U)= inf
∫

U

�p dµ, (2.12)

where the infimum is taken over all very weak gradients of all functions u in U such that
u|E�1 and u|F �0. Such a function u is called admissible for the condenser (E,F ;U).
If U=X, we write (E,F ;X)=(E,F ) as in the case of modulus.

Remark 2.13. Observe that no a priori regularity of admissible functions is assumed
above. In practice, of course, the existence of a very weak gradient in Lp imposes restric-
tions. We use the notation capc

p(E,F ;U) and capL
p (E,F ;U) for the quantity in (2.12)

if the infimum is taken over all continuous or locally Lipschitz admissible functions,
respectively. We trivially have

capp(E,F ;U)� capc
p(E,F ;U)� capL

p (E,F ;U). (2.14)

In Rn, if E and F are compact subsets of an open set U , then equality holds in (2.14);
see [He]. We do not know in what generality there is equality in (2.14).

We shall next prove the equality between modulus and capacity, plus an important
inequality (2.19) for condensers of certain type. This result is well known in the Euclidean
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case, and the proof below is distilled from various works, most notably from [Z]. The
generality of the situation forces us to present a detailed argument. First we require
some definitions.

2.15. Quasiconvex and proper spaces. We say that X is quasiconvex if there is a
constant C>0 so that every pair of two points x and y in X can be joined by a curve
γ whose length satisfies l(γ)�C|x−y|. Moreover, X is locally quasiconvex if every point
in X has a neighborhood that is quasiconvex.

More generally, X is said to be ϕ-convex if there is a cover of X by open sets {Uα}
together with homeomorphisms {ϕα: [0,∞)→[0,∞)} such that any pair of two points x

and y in Uα can be joined by a curve in X whose length does not exceed ϕα(|x−y|).
We shall not be using the concept of ϕ-convexity in any serious way in this paper:

the functions {ϕα} will have no quantitative bearing on our discussion. Most of the
spaces considered below will be (globally) quasiconvex, but to prove this, something like
ϕ-convexity needs to be assumed first.

We call X proper if its closed balls are compact.

Remark 2.16. There is a neat connection between quasiconvexity and very weak
gradients of Lipschitz functions. Namely, it is easy to see that a space X is quasiconvex
if and only if every function with bounded very weak gradient on X is Lipschitz.

Proposition 2.17. We always have

capp(E,F ;U)=modp(E,F ;U). (2.18)

Next suppose that X is ϕ-convex, that E and F are two disjoint closed sets in X with
compact boundaries, and that X is proper. Then

capc
p(E∩B,F∩B;B)�modp(E,F ) (2.19)

for each ball B in X. If, moreover, X is locally quasiconvex, (2.19) holds with capL
p on

the left-hand side.

Proof. To prove the inequality modp(E,F ;U)�capp(E,F ;U), take a function u in
U such that u|E�1 and u|F �0, and take any very weak gradient � of u. Then∫

γ

� ds� 1 (2.20)

for all rectifiable curves γ joining E and F in U , so that

modp(E,F ;U)�
∫

U

�pdµ.
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Because u and � were arbitrary, the inequality follows.
To prove the reverse inequality capp(E,F ;U)�modp(E,F ;U), fix a function �:

U→[0,∞] satisfying (2.20). Define

u(x)= inf
∫

γx

� ds (2.21)

for x∈U , where the infimum is taken over all rectifiable paths γx in U joining x to F ; if
no such γx exists, set u(x)=1. Then u|F =0 and u|E�1. Moreover, we have that

|u(x)−u(y)|�
∫

γxy

� ds

for any rectifiable curve γxy joining x and y in U . Thus u is admissible and � is a very
weak gradient of u, whence

capp(E,F ;U)�
∫

U

�pdµ.

Because � was arbitrary, we conclude the proof of equality (2.18).
Now we turn to the second assertion of the proposition. Fix a ball B in X and fix an

admissible metric � for (E,F ). We may clearly assume that B is large enough so that the
boundaries ∂E and ∂F are both contained in B. We would like to build an appropriate
admissible continuous function u in B using �, under the proviso that X is ϕ-convex.
The definition in (2.21) may not work as � need not be bounded, and to circumvent this
possibility an approximation argument is needed.

By the remark made in §2.3, we may assume that � is lower semicontinuous, and
clearly we may assume that �|F =0. By considering the functions x �→max{�(x), 1/m}
if x∈2B, and x �→�(x) if x /∈2B, m=1, 2, ..., we may further assume that �|2B is lower
semicontinuous and that �|2B\F is bounded away from zero: ��ξ in 2B\F , where ξ>0
is a positive constant (use Lebesgue’s monotone convergence theorem). Fix a positive
integer k and consider the function �k=min{�, k}. Then �k is bounded and lower semi-
continuous in 2B, �k�ξ in 2B\F (for we may clearly assume that ξ<1), and vanishes
in F . Define

uk(x)= inf
∫

γx

�k ds (2.22)

for x∈B, where the infimum is taken over all rectifiable paths γx joining x to F in B; if
no such path exists, we set uk(x)=1. As above, we find that uk|F∩B=0 and that �k is a
very weak gradient of uk. Next, it is not difficult to see that u is continuous in B. Indeed,
pick a point in B and let x and y be points in some small open ϕα-convex neighborhood
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Uα of that point. That is, we can choose a curve γxy such that l(γxy)�ϕα(|x−y|). By
the definition of uk, we have

|uk(x)−uk(y)|�
∫

γxy

�k ds� kl(γxy)� kϕα(|x−y|), (2.23)

and we conclude that uk is continuous in Uα. Note here that if X is locally quasiconvex,
then uk is locally Lipschitz.

We would be finished if only �k were an admissible metric for (E,F ), but there is
no guarantee for that assumption. Therefore some extra technicalities are due. Denote

mk = inf uk|E∩B.

Then the function vk=uk/mk satisfies vk|E�1 and vk|F =0. (Recall that � is assumed
to be bounded away from zero in 2B\F , which fact together with the compactness and
disjointness of ∂F and ∂E guarantees that mk>0.) Because �k/mk is a very weak
gradient of the continuous function vk in B, and because

m−p
k

∫
X

�p
k dµ�m−p

k

∫
X

�pdµ,

we infer that it suffices to show
sup

k
mk � 1.

Note also that vk is Lipschitz if uk is.
Suppose on the contrary that for each k there are points xk∈E∩B and yk∈F∩B,

and curves γk joining xk to yk in B such that∫
γk

�k ds� 1−δ

for some positive number δ independent of k. We may assume that each yk belongs to the
compact set ∂F , and that each xk belongs to the compact set ∂E, and thus by passing to
a subsequence we may assume that yk→y∈∂F and xk→x∈∂E as k→∞. Recall that ∂E

and ∂F lie in B. We may also assume that γk⊂B\F except one end point. Because �k is
bounded away from zero in 2B\F by ξ, the lengths of the curves γk remain bounded from
above by M=(1−δ)/ξ. We assume that each curve γk: [0, l(γk)]→B⊂X is parametrized
by its arc length, and then extend γk(t)=γk(l(γk)) for l(γk)�t�M . We obtain a family
of 1-Lipschitz maps γk: [0,M ]→X with images lying in a fixed compact set �B, because X

is proper. The Arzela–Ascoli theorem implies, by passing to a subsequence if necessary,
that γk converges uniformly on [0,M ] to a 1-Lipschitz map γ: [0,M ]→X. In particular,
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γ is a rectifiable curve in X joining the points x∈∂E and y∈∂F . We may also assume
at this point that l(γk)→M . Hence, for a fixed positive integer k0, we have that

lim inf
k→∞

∫
γk

�k0 ds= lim inf
k→∞

∫ l(γk)

0

�k0�γk(t) dt

� lim inf
k→∞

∫ M−ε

0

�k0�γk(t) dt�
∫ M−ε

0

lim inf
k→∞

�k0�γk(t) dt

�
∫ M−ε

0

�k0�γ(t) dt,

where ε>0 is arbitrary. Note that the lower semicontinuity of �k0|2B was needed here.
Thus

lim inf
k→∞

∫
γk

�k0 ds�
∫ M

0

�k0�γ(t) dt�
∫

γ

�k0 ds.

To justify the last inequality, we use the definition of line integrals together with the fact
that s′(t)�1 for almost every t, where s=sγ : [0,M ]→[0, l(γ)] is the length function of γ;
this follows easily from the 1-Lipschitz continuity of γ. More precisely, we have that

∫
γ

�k0 ds=
∫ l(γ)

0

�k0�γs(t) dt=
∫ M

0

�k0�γs�s(t)s′(t) ds�
∫ M

0

�k0�γ(t) dt.

In conclusion,

1−δ � lim inf
k→∞

∫
γk

�k ds�
∫

γ

�k0 ds

for all k0=1, 2, ... . But this is a contradiction as

lim
k0→∞

∫
γ

�k0 ds=
∫

γ

� ds� 1.

This completes the proof of Proposition 2.17.

3. Loewner spaces

Much of the theory of quasiconformal maps in Rn rests on the fact, observed by Loewner
in 1959 [L], that the n-capacity between two nondegenerate continua in Rn is positive.
This motivates the following definition.

Definition 3.1. Suppose that (X,µ) is a metric measure space as in §2.1 of Hausdorff
dimension Q. We call X a Loewner space if there is a function φ: (0,∞)→(0,∞) so that

modQ(E,F )�φ(t) (3.2)
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whenever E and F are two disjoint, nondegenerate continua in X and

t�∆(E,F )=
dist(E,F )

min{diamE,diam F} . (3.3)

Note that the Loewner condition (3.2) depends both on the underlying metric and
on the measure µ, which a priori need not be related to each other.

Euclidean space Rn with its usual metric is a Loewner space, and further examples
will be presented in §6. In the present section, we analyze the Loewner condition in some
detail.

Remark and convention 3.4. Recall from the introduction that a space (X,µ) is
Q-regular if there is a constant C�1 so that

C−1RQ �µ(BR)�CRQ (3.5)

for all balls BR in X of radius R<diamX. In Definition 1.6, we defined the regularity
of a space in terms of its Hausdorff measure HQ. If (3.5) holds, then X has Hausdorff
dimension Q and (3.5) holds for HQ as well, possibly with different constant C. Moreover,
if X is locally compact and if µ is a Borel measure on X satisfying (3.5), then µ and HQ

are comparable measures on X. See [S4, Appendix C] for a careful discussion on these
matters.

From now on, if a space (X,µ) is called Q-regular, we understand that (3.5) holds;
if no measure is being specified, we understand that (1.7) holds.

Theorem 3.6. Let (X,µ) be a Loewner space of Hausdorff dimension Q>1. Then
there is a constant C1�1 such that

C−1
1 RQ �µ(BR) (3.7)

for all balls BR in X of radius R<diam X. If there is a constant C2�1 so that

µ(BR)�C2R
Q (3.8)

for all balls BR in X of radius R<diamX, then (X,µ) is Q-regular and there is a
decreasing homeomorphism ψ: (0,∞)→(0,∞) such that

modQ(E,F )�ψ(∆(E,F )). (3.9)

Moreover, we can select ψ so as to satisfy

ψ(t)≈ log
1
t

(3.10)
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for all sufficiently small t, and

ψ(t)≈ (log t)1−Q (3.11)

for all sufficiently large t. The statement is quantitative in the sense that the constant C1

and the homeomorphism ψ depend only on the data associated with (X,µ).

The above theorem contains the important fact that if two nondegenerate continua
of fixed size in a regular Loewner space are moved towards each other, then the modulus
between them tends to infinity. This is of course a much stronger condition than (3.2),
and not true, in general, if the space is not regular; see Remark 3.28. The asymptotic
behavior we obtain for ψ is the correct one in Rn. Estimates of this kind were first
proved in Rn by Gehring [G2] by a symmetrization argument. For a detailed study of
the function ψ in Rn, see [Vu].

Also as a part of Theorem 3.6, we see that the lower bound (3.7) on the mass is a
consequence of the Loewner condition. The upper bound (3.8) need not be: Rn equipped
with its Euclidean metric and with the measure dµ(x)=(1+|x|) dx is a Loewner space of
Hausdorff dimension n, but it is not n-regular.

We show that regular Loewner spaces enjoy a number of useful geometric properties.

3.12. Linear local connectivity. A metric space X is said to be linearly locally con-
nected if there is a constant C�1 so that for each x∈X and r>0 the following two
conditions hold:

(1) any pair of points in B(x, r) can be joined in B(x,Cr);
(2) any pair of points in X\�B(x, r) can be joined in X\�B(x, r/C).
By joining, we mean joining by a continuum. For the next proposition, recall the

concept of quasiconvexity from §2.15.

Theorem 3.13. Let (X,µ) be a Loewner space of Hausdorff dimension Q>1 sat-
isfying (3.8). Then X is linearly locally connected and quasiconvex. The statement is
quantitative in the sense that the constants associated with the conclusion depend only
on the data associated with X.

In fact, more is true than indicated in Theorem 3.13. There is a large family of
curves in B(x,Cr) joining points in different components of B(x, r), and similarly for
X\�B(x, r). See Lemma 3.17 below.

We begin the proofs of Theorems 3.6 and 3.13 by giving three modulus estimates.
Many of the ideas used below are rather standard in the quasiconformal theory in Rn,
cf. [N], [GM]. In Lemmata 3.14–3.17, we shall assume that (X,µ) is a Loewner space of
Hausdorff dimension Q>1 satisfying the upper mass bound (3.8). As usual, C,C ′, ... will
denote positive constants that depend only on the data associated with X.
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Lemma 3.14. Let 0<2r<R and let y∈X. Then

modQ(�B(y, r),X\B(y,R))�C

(
log

R

r

)1−Q

.

Proof. Define �(x)=(|x−y| log(R/r))−1 when x∈B(y,R)\B(y, r) and extend � as
zero to the rest of X. Then � is an admissible metric, and hence we have that

modQ(�B(y, r),X\B(y,R))�
∫

X

�Qdµ.

Let k be the least integer with 2kr�R. Then, using the assumption (3.8), we compute

∫
X

�Qdµ�C

(
log

R

r

)−Q k∑
j=0

(2jr)−Q(2j+1r)Q �C

(
log

R

r

)1−Q

,

and the lemma follows.

Lemma 3.15. Let Γ be a family of curves in a ball BR such that l(γ)�L>0 for
each γ∈Γ. Then

modQ Γ�µ(BR)L−Q �CRQL−Q. (3.16)

Proof. Use the density �(x)=L−1 if x∈BR and �(x)=0 if x /∈BR, and remember
that X is assumed to satisfy (3.8). Note that the first inequality in (3.16) holds without
assumption (3.8).

Lemma 3.17. There exist positive constants C�2 and δ, depending only on the
data associated with X, such that

modQ(E,F ;B(x,Cr)\�B(x, r/C))� δ (3.18)

whenever E and F are disjoint continua in B(x, r)\�B
(
x, 1

2r
)
, both of diameter no less

than 1
8r.

Proof. Let x∈X and 0<r. Then fix two continua E and F in B(x, r)\�B
(
x, 1

2r
)

as above. For the three path families Γ1=(E∪F, �B(x, r/C)), Γ2=(E∪F,X\B(x,Cr))
and Γ3=(E,F ;B(x,Cr)\�B(x, r/C)), we have by the basic properties (2.6)–(2.8) of the
modulus that

modQ(E,F )�
3∑

j=1

modQ Γj .

Moreover, by the Loewner condition (3.2) we have that

modQ(E,F )� 2δ ≡φ(16)> 0.
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Finally, by Lemma 3.14 we can choose a constant C such that

modQ Γ1+modQ Γ2 � δ,

and the claim follows by combining the last three inequalities.

Proof of Theorem 3.13. Fix a pair x1, x2 of points in X\�B(x, r) and pick a recti-
fiable curve γ joining x1, x2 in X. If γ lies in X\�B(x, r/C), where C is the constant
in Lemma 3.17, then condition (2) in §3.12 holds. If γ meets �B(x, r/C), then by (3.18)
we can find two disjoint subcontinua E and F of γ in B(x, r)\B

(
x, 1

2r
)
, both of di-

ameter at least 1
8r, such that the modulus of the curve family joining E and F in

B(x,Cr)\�B(x, r/C) is positive. In particular, we can join x1 and x2 in the complement
of �B(x, r/C), and (2) of §3.12 again holds.

The proof for the first condition (1) of §3.12 is similar. Of course, (1) is implied by
the quasiconvexity, which we shall prove next.

Fix two distinct points x1, y1 in X. Write r=|x1−y1| and pick a continuum E1

joining x1 to X\B
(
x1,

1
4r

)
in �B

(
x1,

1
4r

)
; then select F1 corresponding to y1 analo-

gously. Using the Loewner condition, estimate (3.16), and an argument similar to that in
Lemma 3.17, we easily infer that E1 and F1 can be joined by a curve γ whose length does
not exceed Cr. Next, let x2∈γ∩E1, write r1=|x1−x2|� 1

4r, and pick a continuum E2

joining x1 to X\B
(
x1,

1
4r1

)
in �B

(
x1,

1
4r1

)
. Select similarly a subcurve E′

2⊂�B
(
x2,

1
4r1

)
of γ that joins x2 to X\B

(
x2,

1
4r1

)
. As above, we infer that E2 and E′

2 can be joined by
a curve γ1 whose length does not exceed Cr1� 1

4Cr. Continuing inductively we obtain a
connected set γ∪γ1∪ ... joining x1 to x2 whose length does not exceed Cr. We see from
the construction that this set contains a curve that joins x1 and x2. The claim follows
by symmetry, and we conclude the proof for Theorem 3.13.

Remark 3.19. The proof of Theorem 3.13 shows that the following stronger version
of linear local connectivity is true as well: any pair x1, x2 of points in B(x, r)\B

(
x, 1

2r
)

can be joined by a curve γ in B(x,Cr)\B(x, r/C) such that the length of γ does not
exceed C |x1−x2|, where the constant C depends only on the data associated with X.
We are assuming here that X is a Loewner space satisfying (3.8) as in Theorem 3.13.

Proof of Theorem 3.6. We prove first that X satisfies the lower mass bound (3.7).
Take a ball BR=B(x,R) with R<diam X. Then there is a point y∈X\B

(
x, 1

2R
)
. Join y

to x by a curve, and then choose two subcurves γ1 and γ2 that lie in B
(
x, 1

2R
)
\B

(
x, 1

4R
)

and B
(
x, 1

8R
)
, respectively, with

dist(γ1, γ2)
min{diam γ1,diam γ2}

� 16.
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By the Loewner property and the basic properties of modulus (see (2.8)), we have that

φ(16)�modQ(γ1, γ2;X)�modQ

(
γ2, ∂B

(
x, 1

4R
)
;B

(
x, 1

2R
))

.

But because every curve joining γ2 to ∂B
(
x, 1

4R
)

has length at least 1
8R, the function

�(x)=8/R for x∈B
(
x, 1

2R
)
, and �=0 elsewhere, is admissible, and whence

C−1RQ �µ
(
B

(
x, 1

2R
))

�µ(BR)

as desired.
We conclude that X is Q-regular provided the upper mass bound (3.8) holds.
To prove the existence of a homeomorphism ψ together with the asymptotic esti-

mates (3.10) and (3.11), fix two disjoint, nondegenerate continua E and F in X. We first
show that

modQ(E,F )�C′ log(1/∆(E,F )), (3.20)

provided that ∆(E,F ) is sufficiently small. Let C be the constant in Lemma 3.17; recall
that C�2. We are free to assume that diamE�diam F . Now pick a point x∈E with
dist(x, F )=dist(E,F )=d. Choose k to be the largest integer that is both positive and
satisfies

Ck+2∆(E,F )� 1;

such an integer k can be found if ∆(E,F ) is sufficiently small. For each positive integer
j�k pick a continuum

Ej ⊂E∩B(x,Cj+1d)\�B(x,Cj−1d)

of diameter at least Cjd, and select Fj analogously; such continua exist by our assump-
tions on ∆(E,F ) and k (see Theorem 2.16 in [HY]). Because no point in X belongs to
more than three of the annular sets B(x,Cj+1d)\�B(x,Cj−1d), we find that

3modQ(E,F )�
k∑

j=1

modQ(Ej , Fj ;B(x,Cj+1d)\�B(x,Cj−1d)).

Thus Lemma 3.17 shows that
3modQ(E,F )� kδ,

from which (3.20) follows if ∆(E,F ) is sufficiently small.
It remains to establish (3.11). For this, we can assume that ∆(E,F )�M for some

large constant M . We can also make the assumption

diamE �diam F � 2 diam E
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by replacing F by an appropriate subcontinuum [HY, 2.16]. We claim that

modQ(E,F )�C′(log ∆(E,F ))1−Q, (3.21)

provided M is sufficiently large.
To this end, pick points x1∈E and x2∈F such that |x1−x2|=dist(E,F ). Let C

be the constant in Lemma 3.17; we assume that C�3. Consider the balls Bj(i)=
B(xi, C

j diamE) and the annuli

Aj(i)=Bj+1(i)\�Bj−1(i)

for i=1, 2 and j=1, ..., k−2, where k is the least integer so that Bk(1)∩Bk(2) �=∅. We
use the notation B0(1)=E and B0(2)=F . Note that

3� k �C′ log ∆(E,F ), (3.22)

provided M is sufficiently large. Next observe that

modQ Γj(i)� δ > 0, (3.23)

where Γj(i) is the family of all rectifiable curves joining Bj−1(i) to X\Bj(i) inside Aj(i),
and where δ depends only on C and on the data for the Loewner space X. (Notice that
the modulus of all nonrectifiable curves joining Bj−1(i) and X\Bj(i) in Aj(i) is zero,
because Aj(i) has finite measure.) Similarly,

modQ(Bk−2(1), Bk−2(2))� δ > 0 (3.24)

for some δ as above.
Let then Γ denote the family of all locally rectifiable curves joining E and F in X,

and let � be an admissible density for Γ. Set

aj(i)= inf
γ

∫
γ

� ds,

where the infimum is taken over all curves γ∈Γj(i). We may clearly assume that each
aj(i) is finite. We shall consider two cases depending on whether the sum

2∑
i=1

k−2∑
j=1

aj(i) (3.25)
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is less than 1
2 or not. Assume first that it is no less than 1

2 . If aj(i)>0, then the function
�/aj(i) restricted to Aj(i) is an admissible density for Γj(i), and so by (3.23),

3
∫

X

�Qdµ�
2∑

i=1

k−2∑
j=1

∫
Aj(i)

�Qdµ� δ
2∑

i=1

k−2∑
j=1

aj(i)Q.

Since
2∑

i=1

k−2∑
j=1

aj(i)Q �C′k1−Q

by Hölder’s inequality, (3.21) follows from (3.22) in the case when the sum (3.25) is at
least 1

2 .
Suppose then that the sum (3.25) is less than 1

2 . We can find rectifiable curves
γj(i)∈Γj(i) so that

2∑
i=1

k−2∑
j=1

∫
γj(i)

� ds� 2
3 . (3.26)

Furthermore, we can assume that there is a rectifiable curve γk−1 joining Bk−2(1) and
Bk−2(2) such that ∫

γk−1

� ds� 1
6 , (3.27)

for otherwise we easily conclude from (3.24) that (3.21) holds for M sufficiently large.
Set

bj(i)= inf
γ

∫
γ

� ds,

where the infimum here is over all rectifiable curves γ joining γj(i) and γj+1(i) in
Aj(i)∪Aj+1(i), and where we define γk−1(i)=γk−1 and Ak−1(i)=Ak−2(i). Because �

is an admissible metric for the curve family joining E and F , we infer from (3.26) and
from (3.27) that

2∑
i=1

k−1∑
j=1

bj(i)� 1
6 .

Now the argument of the preceding paragraph applies with obvious modifications; simply
replace estimate (3.23) with Lemma 3.17. Hence (3.21) follows in this case as well.

Finally, we choose an appropriate homeomorphism ψ of the positive real axis such
that ψ(t)�φ(t) for t>0, and such that (3.10) and (3.11) hold. This completes the proof
of Theorem 3.6.

Remark 3.28. We already pointed out after the statement of Theorem 3.6 that Q-
regularity is not a consequence of the Loewner condition although the lower mass bound
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(3.7) is. On the other hand, the upper mass bound (3.8) is necessary if we are to obtain
the conclusions of Theorems 3.6 and 3.13. This is seen by the following example.

Let X be the plane domain {x=(x1, x2): |x1|<|x2|+1}. Let µ be the measure
dµ(x)=P (|x|) dx given by some positive increasing weight function P . If P (t) grows
sufficiently fast as t→∞, then (X,µ) satisfies the Loewner condition (3.2); note that the
metric in X is the Euclidean metric. On the other hand, it is not difficult to check that one
cannot choose φ so as to satisfy the estimates in Theorem 3.6. In fact, modQ(E,F ) will
not necessarily tend to infinity as ∆(E,F ) tends to zero. (Consider Et={x1=0, 1�x2�t}
and Ft={x1=0,−t�x2�−1}, and let t→∞.) Moreover, X fails to be linearly locally
connected.

4. Quasiconformality vs. quasisymmetry

In this section, we study the fundamental question when quasiconformal maps are quasi-
symmetric. The main theorems are Theorem 4.7 and Theorem 4.9. They imply, for
instance, that quasiconformal maps between Q-regular Loewner spaces are quasisym-
metric if Q is bigger than one. This extends the main result of [HK1], where one of the
spaces was assumed to be a Carnot group. The crucial idea needed for the proofs of
Theorems 4.7 and 4.9 can already be found in [HK1] (see Main Lemma 4.12 below).

To set up some notation, we recall that a homeomorphism f :X→Y between metric
spaces X and Y is said to be quasiconformal if there is a constant H<∞ so that

lim sup
r→0

Lf (x, r)
lf (x, r)

�H (4.1)

for all x∈X, where

Lf (x, r) = sup
|x−y|�r

|f(x)−f(y)| (4.2)

and

lf (x, r) = inf
|x−y|�r

|f(x)−f(y)|. (4.3)

Recall also that a homeomorphism f :X→Y as above is said to be quasisymmetric
if there is a constant H<∞ so that

|x−a|� |x−b| implies |f(x)−f(a)|�H |f(x)−f(b)| (4.4)

for each triple x, a, b of points in X. This requirement is the same as (1.5) in the in-
troduction. The slightly different formulation used here can easily be turned into the
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following stronger quasisymmetry condition. A homeomorphism f :X→Y is called η-
quasisymmetric if there is a homeomorphism η: [0,∞)→[0,∞) so that

|x−a|� t|x−b| implies |f(x)−f(a)|� η(t)|f(x)−f(b)| (4.5)

for each t>0 and for each triple x, a, b of points in X. Obviously, (4.5) implies quasisym-
metry as defined in (4.4), and in general these two notions are not equivalent. However,
we have the following lemma due to Väisälä [V4, 2.9]:

Lemma 4.6. Suppose that X and Y are pathwise connected doubling metric spaces
(defined in §5.3). Then each homeomorphism f from X onto Y that satisfies (4.4) also
satisfies (4.5). The statement is quantitative in that the function η will only depend on
H in (4.4) and on the data associated with X and Y .

Our standing assumption in §2.1 entails that all metric spaces be pathwise connected.
Moreover, in connection with quasisymmetric maps, we only consider doubling spaces in
this paper. Thus the two notions of quasisymmetry can and will be used interchangeably
in what follows.

For the following discussion, recall the standing assumptions from §2.1, and also the
definitions in Definition 3.1, (3.5) and §3.12.

Theorem 4.7. Suppose that X and Y are Q-regular metric spaces with Q>1,
that X is a Loewner space, and that Y is linearly locally connected. If f is a quasi-
conformal map from X onto Y as defined in (4.1), then each point x in X has a neigh-
borhood U where f is η-quasisymmetric as defined in (4.5). We can take U=B(x, r) if
Y \�B(f(x), 2Lf (x, 2r)) �=∅. This statement is quantitative in that the function η depends
only on H in (4.1) and on the data associated with X and Y .

The proof of Theorem 4.7 will show that the linear local connectivity of Y could be
replaced by a weaker condition that only requires “local linear local connectivity”. We
leave such generalizations to the reader. Remember also that X as a Loewner space is
linearly locally connected (Theorem 3.13).

Corollary 4.8. Suppose that X and Y are unbounded Q-regular metric spaces
with Q>1, that X is a Loewner space, and that Y is linearly locally connected. If f is
a quasiconformal map from X onto Y that maps bounded sets to bounded sets, then f is
quasisymmetric. This statement is quantitative in the same sense as in Theorem 4.7.

Theorem 4.7 does not directly apply for bounded spaces, which need to be handled
with a separate argument.
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Theorem 4.9. Suppose that X and Y are bounded Q-regular metric spaces with
Q>1, that X is a Loewner space, and that Y is linearly locally connected. If f is a
quasiconformal map from X onto Y , then f is quasisymmetric.

Theorem 4.9 cannot be made quantitative, for there need not be a bound for the
quasisymmetry constant in terms of the data of X and Y even if f is conformal. (Think
of the group of conformal transformations on the n-sphere.) Similarly, conformal or
quasiconformal maps need not map bounded spaces onto bounded spaces, and so there
is no counterpart to Theorem 4.9 in the case when only one of the spaces is bounded
(the quasisymmetric image of a bounded space is always bounded).

Combining Corollary 4.8, Theorem 4.9 and the simple observation that linear local
connectivity is preserved under quasisymmetric maps, we arrive at the following corollary.

Corollary 4.10. Suppose that X and Y are Q-regular metric spaces with Q>1
and that X is a Loewner space. Assume that X and Y are simultaneously bounded
or unbounded. Then a quasiconformal map f from X onto Y that maps bounded sets
to bounded sets is quasisymmetric if and only if Y is linearly locally connected. This
statement is quantitative if X and Y are both unbounded, but not so if they are both
bounded.

There is one immediate important application of the above results. Even in Rn, n�2,
it is difficult to verify directly from the definition (4.1) that the inverse of a quasiconformal
map is quasiconformal; standard proofs of this fact use rather deep analytic properties
of quasiconformal maps. In contrast, the inverse of an η-quasisymmetric map is easily
seen to be quasisymmetric, hence quasiconformal, and therefore we obtain the following
corollary to Theorem 4.7.

Corollary 4.11. Suppose that X and Y are Q-regular metric spaces with Q>1,
that X is a Loewner space, and that Y is linearly locally connected. Then the inverse of a
quasiconformal map f from X onto Y is quasiconformal. The statement is quantitative
in the sense that the constant for f−1 depends only on the constant of f and on the data
associated with X and Y .

The proofs rely on the following crucial lemma.

Main Lemma 4.12. Suppose that X and Y are Q-regular metric spaces with Q>1
and that f is a quasiconformal map from X onto Y as defined in (4.1). If E and F

are two continua in X such that y∈f(E)⊂B(y, r) and such that f(F )⊂Y \�B(y,R) for
some y∈Y and for some R>2r, then

modQ(E,F ;X)�C

(
log

R

r

)1−Q

. (4.13)



QUASICONFORMAL MAPS IN METRIC SPACES WITH CONTROLLED GEOMETRY 25

The constant C�1 only depends on H from (4.1) and on the data associated with X

and Y .

Proof. The proof of the lemma is essentially contained in the proof of Theorem 1.7
in [HK1]. In that paper, we assumed that X is a Carnot group, but the only property
of a Carnot group that was used in the argument there was Q-regularity. We shall not
repeat the somewhat lengthy details here. However, because the assertion (4.13) is not
directly stated in [HK1], to ease the reader’s task, we outline the main steps in the proof.

First, the quasiconformality condition (4.1) guarantees that the images of all suffi-
ciently small balls about each point in X have a uniformly roundish shape. We cover the
complement of the sets E and F in X by countably many such small balls Bj , j=1, 2, ...,
and obtain in this way a cover for the image of X\(E∪F ) in Y by fairly round ob-
jects f(Bj). The selection of the balls Bj is relatively simple if X is Rn, because we can
use the Besicovitch covering theorem. In the general case, we have to resort to weaker
covering theorems and the selection becomes more delicate. The process is explained in
detail in [HK1, pp. 70–71].

Next, one shows that with the given choice of the balls Bj , the function

�(x)=C

(
log

R

r

)−1 ∞∑
j=1

diam f(Bj)
diamBj

·
χ2Bj

(x)

dist(f(Bj), y)

is an admissible metric for the condenser (E,F ;X); the constant C�1 depends only on
the data. See [HK1, p. 67 and p. 72, in particular formula (2.10) and §3.17 there].

Finally, the indicated bound (4.13) for the modulus follows by estimating the inte-
gral of �Q from above by using the Q-regularity of X and Y , and a maximal function
argument. See [HK1, p. 73 and p. 67, and especially formula (2.11)] for this. We thus
conclude our discussion of the Main Lemma.

Proof of Theorem 4.7. Fix x∈X and let r>0 be such that Y \�B(f(x), 2Lf (x, 2r))
is not empty. Notice that such an r can be found since f is a homeomorphism. Suppose
then that w, a, b are points in B(x, r) such that

|w−a|� |w−b| (4.14)

and such that
s= |f(w)−f(a)|>M |f(w)−f(b)|. (4.15)

We shall show that M cannot be too large in (4.15). This suffices in light of Lemma 4.6.
To this end, notice that f(b)∈B(f(w), s/M), that f(a) /∈B(f(w), s) and that there

is a point z in X\�B(x, 2r) with

f(z) /∈ �B
(
f(w), 1

2s
)
. (4.16)
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To prove the last statement (4.16), note first that

s= |f(w)−f(a)|� |f(w)−f(x)|+|f(x)−f(a)|� 2Lf (x, 2r)

and that there is z′=f(z) with |f(z)−f(x)|>2Lf (x, 2r), so that z∈X\�B(x, 2r). We
obtain

2Lf (x, 2r)< |f(z)−f(w)|+|f(w)−f(x)|� |f(z)−f(w)|+Lf (x, 2r),

and so |f(z)−f(w)|>Lf (x, 2r)� 1
2s. This proves (4.16).

Since Y is linearly locally connected, we can join f(w) to f(b) in B(f(w), Cs/M) by
a continuum E′, and we can join f(a) to f(z) in Y \�B(f(w), s/C) by a continuum F ′.
Write E=f−1(E′) and F =f−1(F ′). Then E joins w to b and F joins a to z. We find
from (4.14) that

∆(E,F )=
dist(E,F )

min{diamE,diam F} � |w−a|
min{|w−b|, r} � 2.

Because X is a Loewner space, we conclude that

modQ(E,F ;X)�φ(2)> 0.

On the other hand, for M>2C2, we have

modQ(E,F ;X)�C

(
log

M

C2

)1−Q

by Main Lemma 4.12. A bound for M follows from these last two estimates as desired,
and the theorem is proved.

Proof of Theorem 4.9. The proof in this case is basically the same as above, only
slightly more awkward because we have to observe the behavior of f near a fixed “base
point”. This extra complication reflects the fact that there is no quantitative version of
the theorem. Thus, fix a point x0∈X. By Theorem 4.7 we can pick a ball B0=B(x0, r0)
such that f is quasisymmetric in 4B0. Then let x, a, b be a triple of points in X such
that

|x−a|� |x−b|. (4.17)

We need to show that
|f(x)−f(a)|�H |f(x)−f(b)|

for some constant H independent of the points x, a and b.
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We shall consider two cases depending on whether x is in B0 or not. Assume first
that x∈B0. If b is in 2B0, then a is in 4B0, and the desired quasisymmetry estimate
follows. If b is not contained in 2B0, then the quasisymmetry of f in 4B0 shows that

diam f(B0)�C |f(x)−f(b)|. (4.18)

To see this, assume that
M |f(x)−f(b)|� |f(x)−f(w)| (4.19)

for some w∈B0 and for some large M . Because Y is linearly locally connected, we can
join f(x) to f(b) in B(f(x), C|f(x)−f(b)|); in particular, there is a point z∈∂2B0 such
that |f(x)−f(z)|�C |f(x)−f(b)|. Because f is quasisymmetric in 4B0, we infer from
(4.19) that

M |f(x)−f(b)|� |f(x)−f(w)|�C |f(x)−f(z)|�C |f(x)−f(b)|.

Thus M in (4.19) cannot be too large, and (4.18) follows. It follows from (4.18) that

|f(x)−f(a)|�diam Y �C diam Y (diam f(B0))−1|f(x)−f(b)|�C |f(x)−f(b)|.

We have thus verified the quasisymmetry in the case when x lies in B0.
Suppose now that x is not contained in B0. Notice that if

|f(x)−f(x0)|�M |f(x)−f(b)|, (4.20)

then by reasoning as in the above paragraph we conclude that (4.18) holds, and hence
that the desired quasisymmetry estimate holds; in this case the constant will depend on
M from (4.20). Thus we assume that

|f(x)−f(x0)|�M |f(x)−f(b)| (4.21)

for some large M whose value will be determined momentarily. Suppose that

|f(x)−f(a)|�M |f(x)−f(b)| (4.22)

for the same value of M as in (4.21). By the linear local connectivity of Y we may
join f(x) to f(b) by a continuum E in B(f(x), C |f(x)−f(b)|) and f(a) to f(x0) by a
continuum F in Y \B(f(x),M |f(x)−f(b)|/C).

We again separate two cases, this time depending on the location of a. Suppose first
that a /∈δB0, where 0<δ<1 is a constant such that X is 1/2δ-linearly locally connected.
Notice that such a constant exists because X is Loewner (Theorem 3.13). Then by (4.17),

min{diam f−1(F ),diam f−1(E)}�min{δr0, |x−b|}�min{δr0, |x−a|}

�min{δr0,dist(f−1(F ), f−1(E))}

� δr0 dist(f−1(F ), f−1(E))
diamX

.

(4.23)
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Because X is a Loewner space, we obtain from (4.23) and from Main Lemma 4.12 that

0<C �modQ(f−1(E), f−1(F );X)�C

(
log

M

C2

)1−Q

,

provided M>2C2. Consequently, a bound for M follows and the proof is complete in
the case a /∈δB0.

Assume finally that a lies in δB0, while (4.21) holds. Let F ′ be a continuum in 1
2B0

which joins a and x0 and has diameter at least δr0; such a continuum exists by the choice
of δ. Let F =f(F ′). We claim that

d=dist(f(x), F )�C−1diam f(B0), (4.24)

where C�1 depends only on the linear local connectivity constant of Y and on the quasi-
symmetry constant of f in 4B0. To prove (4.24), let w∈F be such that |f(x)−f(w)|=d.
Then we can join f(x) and f(w) in B(f(x), Cd) by a continuum; in particular, because
x /∈B0, we can find points z1 and z2 in X such that

|x0−z1|= 1
2r0, |x0−z2|= r0 and f(zi)∈B(f(x), Cd)

for i=1, 2. Because f is η-quasisymmetric in 4B0, we have, for any y∈B0, that

|f(y)−f(x0)|�C |f(z2)−f(x0)|�C |f(z1)−f(x0)|�C |f(z1)−f(z2)|�Cd.

This gives (4.24). Next, (4.22) implies that

|f(x)−f(b)|�M−1|f(x)−f(a)|�M−1 diamX,

and hence we can find a continuum E joining f(x) to f(b) in B(f(x), C diamX/M). Thus
an upper bound for M follows as in the above paragraph upon observing that (4.23) holds
for the present continua E and F as well. This completes the proof of Theorem 4.9.

Remark 4.25. (a) An inspection of the proof of Theorem 4.9 gives that the quasi-
symmetry constant of f will depend, in addition to the usual data, on the quantities

r0

diamX
,

diam f(B0)
diam Y

,

and nothing else. These are natural parameteres that necessarily show up (and would
disappear if quasi-Möbius maps [V3] were used instead of quasisymmetric maps).

(b) In the proof of Main Lemma 4.12 one only needs a local lower bound on the mass
in Y ; that is, the bound (3.7) is only required to hold for R sufficiently small (depending
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on the center of the ball). Thus in the case where X and Y are domains (i.e. open
connected subsets) in Rn, n�2, Theorems 4.7 and 4.9 directly generalize some results
proved by Gehring and Martio [GM], Väisälä [V4] and the first author [H1]. For those
who are familiar with the lingo, we recall that it was proved in [GM] that quasiconformal
maps from QED-domains onto linearly locally connected domains are quasisymmetric
(see also [V3]); similar results were proved in [V4], [H1] with respect to the internal
metrics of the domains in question.

(c) If the space X in Main Lemma 4.12 satisfies a stronger, Besicovitch-type cover-
ing theorem, where every cover of a set by balls admits a countable subcover with finite
(depending on X) amount of overlap, then one can replace “lim sup” in the definition
of quasiconformality (4.1) by “lim inf”; the conclusion remains the same. In particular,
under the stronger covering hypothesis in each of the results of this section this weaker
notion of quasiconformality is sufficient to imply quasisymmetry. This follows from the
proof of Theorem 1.7 in [HK1], where comments in the case X=Rn have been made.
Besides Rn, many other “Riemannian-type” spaces have this covering property, for ex-
ample compact polyhedra (cf. Theorem 6.13). See [Fe, 2.8] for a thorough discussion of
covering theorems.

5. Poincaré inequalities and the Loewner condition

Suppose throughout this section that (X,µ) is a metric measure space as in §2.1. We
shall show that the validity of a Poincaré-type inequality in X is tantamount to X being
a Loewner space as defined in Definition 3.1, provided X is proper, regular and ϕ-convex.

5.1. Poincaré inequalities. Let p�1 be a real number. We say that X admits a weak
(1, p)-Poincaré inequality if

∫
B

|u−uB | dµ�Cp(diamB)
(∫

C0B

�p dµ

)1/p

(5.2)

whenever u is a bounded continuous function in a ball C0B and � is its very weak gradient
there. The constants Cp�1 and C0�1 should be independent of B and u. We use the
standard notation

uA =
∫

A

udµ=
1

µ(A)

∫
A

udµ

for the mean value of a function u in a measurable set A of positive measure.
Inequality (5.2) is termed “weak” because we allow a larger ball on the right-hand

side than on the left. In many cases, because of the uniformity of (5.2) (constants are
independent of B), this weak estimate can be used to iterate so as to yield an inequality
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with the same ball on both sides [J], [HaK]. Moreover, if the measure µ satisfies the
doubling condition (5.4) below, then a weak (1, p)-Poincaré inequality (5.2) (for all balls)
implies the a priori stronger inequality where one replaces (for all balls) the averaged
L1-norm on the left by the averaged Lq-norm for some q>p [HaK]. This explains the
terminology; we could speak about a (q, p)-Poincaré inequality. The weak inequality
(5.2) is sufficient for our purposes in this paper.

Notice that if X admits a weak (1, p)-Poincaré inequality, then it admits a weak
(1, p′)-Poincaré inequality for p′>p by Hölder’s inequality. The converse is not true in
general; see Remark 6.19.

We emphasize that inequality (5.2) should hold for all balls B in X. It may well
happen that something like (5.2) is true for B=X, but X may still not admit a weak
Poincaré inequality in the above sense.

5.3. Doubling space. A metric measure space (X,µ) is said to be doubling if there is
a constant C�1 so that

µ(B2R)�Cµ(BR) (5.4)

for all balls BR in X of radius 0<R<diam X. If there is no measure specified on X, we
can define X to be doubling if there is a constant C�1 so that every ball in X can be
covered by at most C balls with half the radius. It is easy to see (by Covering Lemma 5.5)
that X is doubling in this latter sense if there is a measure µ on X such that (5.4) holds.

Clearly, if X is regular, it is also doubling, but the converse need not be true. For
instance, the space (Rn, (1+|x|) dx) is a doubling space with lower mass bound (3.7)
(with Q=n), but it is not regular. Similarly, any complete Riemannian n-manifold with
nonnegative Ricci curvature is doubling with upper mass bound (3.8) (with Q=n), but
it need not be regular.

Next we record a basic but most useful covering lemma (see [Ma, 2.1] or [St1, p. 9]).

Covering Lemma 5.5. Suppose that X is a metric space and suppose that A is
a bounded subset of X. If for each x∈A we are given a radius rx>0 and a ball Bx=
B(x, rx), then we can pick a countable, pairwise disjoint collection {Bi=Bxi : i=1, 2, ...}
of balls of this given form such that either

A⊂
⋃
i

5Bi (5.6)

or (ri) is an infinite sequence that does not converge to zero as i→∞.

Typically, the spaces X in this paper are such that the second alternative in Covering
Lemma 5.5 is ruled out, and hence (5.6) holds. This happens for instance if X is doubling.
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We begin with the following theorem, which gives a sufficient condition for a space
to be Loewner. Recall that a proper space is one where closed balls are compact; recall
also the definition for ϕ-convexity from §2.15.

Theorem 5.7. Suppose that (X,µ) is a proper, doubling and ϕ-convex space where
the lower mass bound (3.7) holds for some Q�1. If X admits a weak (1, Q)-Poincaré
inequality, then X is a Loewner space. The statement is quantitative in that the function
φ in Definition 3.1 only depends on the data associated with X (of which the ϕ-convexity
is not part).

We do not know to what extent the assumptions “proper, doubling and ϕ-convex”
in Theorem 5.7 are necessary.

Theorem 5.7 follows from the more general Theorem 5.9 below. The latter will be
needed later in §6. We record the following corollary to Theorems 5.7 and 3.13. The
statement is quantitative, and the ϕ-convexity plays no role in the conclusion.

Corollary 5.8. Suppose that X is a proper, Q-regular and ϕ-convex space that
admits a weak (1, Q)-Poincaré inequality for some Q>1. Then X is linearly locally
connected and quasiconvex.

A smooth submanifold of Euclidean space provides a standard example of a space
that is proper and locally quasiconvex. Corollary 5.8 provides a sufficient condition for
such a submanifold to be quasiconvex. Related but different sufficient conditions for
quasiconvexity of metric manifolds can be found in [S4].

Recall that the Hausdorff s-content of a set E in a metric space is the number

H∞
s (E)= inf

∑
i

rs
i ,

where the infimum is taken over all countable covers of the set E by balls Bi of radius ri.
Thus the s-content of E is less than, or equal to, the Hausdorff s-measure of E, and it
is never infinite for E bounded. However, the s-content of a set is zero if and only if its
Hausdorff s-measure is zero.

Theorem 5.9. Suppose that (X,µ) is a doubling space where the lower mass bound
(3.7) holds for some Q�1. Suppose further that X admits a weak (1, p)-Poincaré in-
equality for some 1�p�Q. Let E and F be two compact subsets of a ball BR in X and
assume that, for some Q�s>Q−p and 1�λ>0, we have

min{H∞
s (E),H∞

s (F )}�λRs−Qµ(BR). (5.10)

Then there is a constant C�1, depending only on s and on the data associated with X,
so that ∫

BCR

�p dµ�C−1λµ(BR)R−p (5.11)
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whenever u is a continuous function in the ball BCR with u|E�0 and u|F �1, and � is
a very weak gradient of u in BCR.

The reason why (5.11) is not being formulated in terms of capacity, but rather for
an individual function, is that we have defined capacity by using arbitrary test functions,
whereas a Poincaré inequality is required for continuous functions only, cf. Remark 2.13.

Let us check how Theorem 5.7 follows from Theorem 5.9.

Proof of Theorem 5.7. Let E and F be two disjoint continua in X. Write d=
dist(E,F ) and assume without loss of generality that

δ =diamE =min{diamE,diamF}.

Fix
t�∆(E,F )=

dist(E,F )
min{diamE,diamF} =

d

δ
.

Choose a point x∈E such that the closed ball �B(x, d) meets F . Then consider the ball

B =B(x, d+2δ).

The compact sets E and F ′=F∩�B(x, d+δ) both lie in B and have Hausdorff 1-content
at least

δ =
δ(d+2δ)Q−1

µ(B)
(d+2δ)1−Qµ(B).

We use this fact and Theorem 5.9 to estimate the modulus between E and F . Because X

is assumed to be proper and ϕ-convex, we can use inequality (2.19) in Proposition 2.17.
(This is the only place where the concept of ϕ-convexity is used in this paper. Moreover,
we only use it so that test functions can be taken to be continuous, whence there is no
quantitative dependence on ϕ-convexity.) In conclusion, by (5.10) and (5.11) with p=Q

and s=1,

modQ(E,F )� capc
Q(E,F ;CB)�C−1 δ(d+2δ)Q−1

µ(B)
µ(B)(d+2δ)−Q �C−1 min{1, 1/t},

and thereby Theorem 5.7 follows.

Proof of Theorem 5.9. Let u be a continuous function in the ball BCR, where
C=10C0, and C0 is the constant appearing in (5.2). Assume that u|E�0 and u|F �1,
and let � be a very weak gradient of u in BCR.

The proof splits into two cases depending on whether or not there are points x in E

and y in F so that neither
|u(x)−uB(x,R)|
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nor
|u(y)−uB(y,5R)|

exceeds 1
5 . If such points can be found, then

1� |u(x)−u(y)|� 1
5 +|uB(x,R)−uB(y,5R)|+ 1

5 ,

or

1�C

∫
B(y,5R)

|u−uB(y,5R)| dµ�CR

(∫
BCR

�p dµ

)1/p

,

from which (5.11) follows. Note that B(x,R)⊂B(y, 5R)⊂BCR by the choices.
The second alternative, by symmetry, is that for all points x in E we have that

1
5 � |u(x)−uB(x,R)|.

Therefore, because u is continuous,

1�C
∞∑

j=0

|uBj(x)−uBj+1(x)|�C
∞∑

j=0

∫
Bj(x)

|u−uBj(x)| dµ

�C
∞∑

j=0

(2−jR)
(∫

C0Bj(x)

�p dµ

)1/p

,

where Bj(x)=2−jB(x,R). Therefore, if∫
C0Bj(x)

�p dµ� εRQ−s−p(2−jR)s−Qµ(Bj(x))

for a fixed ε>0 and for each j=0, 1, 2 , ..., we have that

1�Cε1/p
∞∑

j=0

(2−j)(p+s−Q)/p �Cε1/p

because s>Q−p. It follows that there is an index jx such that∫
C0Bjx(x)

�p dµ� ε0R
Q−s−p(2−jxR)s−Qµ(Bjx(x))

for some ε0>0 depending only on the data. In particular, using Covering Lemma 5.5
and the fact that X is doubling, we find a pairwise disjoint collection of balls of the form
Bk=B(xk, rkR) such that

E ⊂
⋃
k

5Bk
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and such that
µ(Bk)(rkR)s−Q �CRs+p−Q

∫
Bk

�p dµ.

Hence

λRs−Qµ(BR)�H∞
s (E)�

∑
k

(5rkR)s �C
∑

k

(rkR)s−Q(rkR)Q

�C
∑

k

(rkR)s−Qµ(Bk)�CRs+p−Q

∫
BCR

�p dµ,

as desired. This completes the proof of Theorem 5.9.

Next theorem gives a converse to Theorem 5.7.

Theorem 5.12. Suppose that X is a locally compact, Q-regular Loewner space.
Then X admits a weak (1, Q)-Poincaré inequality. The statement is quantitative in that
(5.2) will hold with constants CQ�1 and C0�1 that depend only on the data associated
with X.

Before we go into the proof of this theorem, it is worthwhile to summarize the
equivalence of the Loewner condition and Poincaré inequality in the following corollary.

Corollary 5.13. Suppose that X is proper, Q-regular and ϕ-convex. Then X is
a Loewner space if and only if X admits a weak (1, Q)-Poincaré inequality.

The statement of the above corollary is quantitative, but remember that the ϕ-
convexity assumption has no bearing on the constants. It would be interesting to find
analogues of Corollary 5.13 for 1�p<Q.

The proof of Theorem 5.12 consists of two lemmata. The first lemma probably
belongs to folklore, but we have no reference to give. In it, an alternative characterization
of a Poincaré inequality is given in terms of the maximal function

MRg(x)= sup
r<R

∫
B(x,r)

g dµ. (5.14)

For a future reference, a general p-version is proved.

Lemma 5.15. Suppose that (X,µ) is a locally compact doubling space. Then X

admits a weak (1, p)-Poincaré inequality if and only if there is a constant C�1 so that

|u(x)−u(y)|�C|x−y|(MR�p(x)+MR�p(y))1/p (5.16)

whenever u is a continuous function in a ball BR, x, y∈C−1BR, and � is a very weak
gradient of u in BR. The statement is quantitative in the usual sense.
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Lemma 5.17. Suppose that X is a Q-regular Loewner space. Then the pointwise
estimate (5.16) holds for p=Q, quantitatively.

Proof of Lemma 5.15. First we prove the sufficiency. Let u be a continuous function
in a ball BR and let � be a very weak gradient of u there. Denote by B the ball C−1BR,
where C is as in (5.16). Pick t such that µ({x∈B :u�t})� 1

2µ(B) and µ({x∈B :u�t})�
1
2µ(B). We shall in fact prove a weak (p, p)-Poincaré inequality with uB replaced by t;
that is, we shall prove (5.2) with the averaged Lp-norm of u−t on the left-hand side. By
replacing u with u−t, we may further assume that t=0.

We estimate the integral of |u| over B; by symmetry it suffices to estimate the
integral over the set where u>0. Thus we can assume that u is nonnegative in B. Let
s>0. We claim that

µ({x∈B : u� s})�Cs−pRp

∫
BR

�p dµ (5.18)

for some C�1 independent of s.
To this end, let x be a point in B such that u(x)�s. Then pick y∈B with u(y)�0.

By assumption (5.16), there is a radius 0<r<C |x−y| so that

µ(B(w, r))�C |x−y|ps−p

∫
B(w,r)

�p dµ, (5.19)

where w=x or w=y. Notice that B(w, r)⊂BR. If (5.19) holds with w=y for each choice
of y, we apply Covering Lemma 5.5 and conclude that the set in B where u vanishes can
be covered by a countable collection of balls of the form 5B(wi, ri) such that the balls
B(wi, ri) are pairwise disjoint and satisfy (5.19). Thus

µ(B)� 2µ({y ∈B : u(y)=0})� 2
∑

i

µ(5B(wi, ri))

�C
∑

i

µ(B(wi, ri))�C|x−y|ps−p

∫
BR

�p dµ

so that inequality (5.18) follows. Otherwise, given x with u(x)�s, there is always some
y such that (5.19) holds for w=x. Then we use a covering argument just as above to
obtain inequality (5.18) (in this case we really estimate the measure of the set where u�s

and not just µ(B)).
Inequality (5.18) is a weak-type inequality which does not in general lead to the

strong-type inequality we are looking for. However, the fact that it holds for a function
and its gradient, even if a very weak one, allows one to use a truncation argument which
leads to the desired estimate ∫

B

|u|p dµ�CRp

∫
BR

�p dµ. (5.20)
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This is done, for instance, in [S4, Appendix C]. For convenience, we sketch the argument.
Suppose that j is an integer and consider the set Lj ={x∈BR : 2j �u�2j+1}. Sub-

tract 2j from u and truncate u to obtain a function v such that v=0 when u�2j and
v=2j when u�2j+1. If U is any open set containing Lj then the function h defined
as the restriction of � in U , and zero elsewere, is a very weak gradient of v in BR (see
Lemma C.19 in [S4]). If we now apply the argument above and especially the weak
estimate (5.18) to v, we conclude by letting U tend to Lj that

∫
Lj+1∩B

|u|p dµ�CRp

∫
Lj

�p dµ.

(It is in this approximation by open sets that the local compactness of X is needed.)
The claim (5.20) follows by summing over j. The sufficiency part of the lemma is thus
proved.

To prove the necessity, let u be a continuous function in a ball BR in X, and let
� be its very weak gradient there. Pick x∈ 1

10 BR. Then denote Bx=B
(
x, 1

10 R
)

and
Bi=2−iBx, and estimate

|u(x)−uBx |�
∞∑

i=0

|uBi−uBi+1 |�C
∞∑

i=0

∫
Bi

|u−uBi |

�CR
∞∑

i=0

2−i

(∫
Bi

�p dµ

)1/p

�CR(MR�p(x))1/p.

Similarly, for y∈ 1
10 BR and By=B

(
y, 1

2 R
)
, we have

|u(y)−uBy |�CR(MR�p(y))1/p.

In conclusion, because Bx⊂By and because µ(By)�Cµ(Bx),

|u(x)−u(y)|� |u(x)−uBx |+
∫

Bx

|u−uBy | dµ+ |u(y)−uBy |

� |u(x)−uBx |+C

∫
By

|u−uBy | dµ+ |u(y)−uBy |

�CR(MR�p(x)+MR�p(y))1/p

as desired. This completes the proof of Lemma 5.15.

Proof of Lemma 5.17. Let u be a continuous function in a ball B in X and let � be
a very weak gradient of u in B. We pick two points x and y from B′=C′−1

B for some
large C′, depending only on the data; the value of C ′ will be determined in the course
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of the proof. We need to show that inequality (5.16) holds. As customary, we let below
C,C1, C2, ... denote various constants depending only on the data.

Because X is assumed to be Q-regular and Loewner, it is quasiconvex by Theo-
rem 3.13. Pick a curve γ joining x and y with length not exceeding C1|x−y|; we may
assume that γ lies in B by making C ′ sufficiently large. We may also assume that
|u(x)−u(y)|=1, because estimate (5.16) has the correct homogeneity properties. Con-
sider the annuli

Aj =B(x,C−3j
2 d)\B(x,C−3j−2

2 d)

for j=0, 1, 2, ..., where C2�2 is a constant that will be determined momentarily and
where d is chosen so that the boundary of the ball B(x, d) meets the midpoint of γ.
Note that d�C1|x−y|. We choose C ′ so large that the ball B(x,C2d) is still in B; in
particular, the annuli Aj all lie in B. Next, let γj in Āj be a part of γ joining the
boundaries of the two balls that define Aj . Then we infer from Lemma 3.15 and from
(the proof of) Lemma 3.17 that, by choosing C2 sufficiently large, the estimate

modQ Γj �C−1 > 0 (5.21)

holds, where Γj consists of all those curves in the family (γj , γj+1;Bj) whose length does
not exceed C3C−3j

2 d, where Bj =B(x,C−3j+1
2 d).

Next, write

aj = inf
σ

∫
σ

� ds, (5.22)

where the infimum is taken over all curves σ in Γj . By (5.21), we have that∫
Bj

�Q dµ�C−1aQ
j ,

and hence that ∫
Bj

�Q dµ�C−1aQ
j C3jQ

2 d−Q.

Therefore the desired estimate

|u(x)−u(y)|=1� d

(∫
Bj

�Q dµ

)1/Q

�C |x−y|(MC|x−y|�
Q(x))1/Q

holds provided that there is an index j with

aQ
j C3jQ

2 �C−1

for some C�1 depending only on the data; recall that d�C1|x−y|. Thus we may assume
that

aj � εC−3j
2 (5.23)
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for some small ε>0 and for all j.
Assuming (5.23), we connect each pair of curves γj and γj+1 by a curve γj

′∈Γj

inside the ball Bj such that ∫
γj

′
� ds� 2εC−3j

2 . (5.24)

By the definition of Γj , the length of γj
′ does not exceed C3C

−3j
2 d. These continua γj

′

are so located that we can repeat the above argument by using γj
′ instead of γj . Notice

however that in this case the continua γj
′ and γj+1

′ need not be disjoint. If they are
disjoint, we obtain that the modulus of the family of all those curves that join γj

′ and
γj+1

′ in some appropriate ball roughly of size C−3j
2 d, and whose length does not exceed

C4C
−3j
2 d, has a positive lower bound depending only on the data.
Now we define numbers bj analogously to (5.22); if the continua γj

′ and γj+1
′ meet,

we set bj=0. It then follows as above that the required pointwise estimate holds unless

bj � εC−3j
2

for some small ε>0 and for all j. This means that there are curves γj
′′ joining γj

′ and
γj+1

′ with length not exceeding C4C
−3j
2 d such that∫

γj
′′
� ds� 2εC−3j

2 . (5.25)

Note that γj
′′ may be a constant curve. By using the curves γj

′ and γj
′′, we obtain a

curve γx joining x to some point in γ0. The curve γx has finite length, as follows by
summing up the lengths of γj

′ and γj
′′; moreover, by (5.24) and (5.25) we have that∫

γx

� ds� 2ε
1−C−3

2

<
1
3
, (5.26)

provided ε is small enough, depending only on the data.
Next we repeat the argument for the point y. We find a curve γy starting from y

such that ∫
γy

� ds<
1
3

(5.27)

and
∆(γx, γy)=

dist{γx, γy}
min{diam γx,diam γy}

�C. (5.28)

By using (5.28) and the Loewner property as above one more time, we find that either
the desired estimate (5.16) holds or there is a curve γ̂ joining γx and γy in B such that∫

γ̂

� ds<
1
3
. (5.29)
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By combining (5.26)–(5.29), we arrive at the contradictory inequality

1= |u(x)−u(y)|�
∫

γx∪γy∪ γ̂

� ds< 1.

The proof of Lemma 5.17 is complete.

6. Examples of Loewner spaces

In this section, we collect examples, old and new, of spaces that satisfy the Loewner
condition as defined in Definition 3.1. In particular, we give examples of situations where
the local-to-global phenomenon in the quasiconformal mapping theory occurs, cf. §4.

6.1. Euclidean space and compact manifolds. Euclidean n-space Rn is a Loewner
space for each n�1. This is trivial for n=1, easy for n=2, and due to Loewner [L] for
n�3. The quickest proof of this fact uses the scale invariance of the Loewner condition
and the Sobolev embedding theorem on codimension-one spheres in Rn. The argument
using the Poincaré inequality in §5 of course applies here as well, but insofar as one does
not care about sharp estimates for the function φ, there are other simple proofs available,
cf. [V1, 10.12].

Modelled by Rn, a compact Riemannian manifold is a Loewner space because a
weak Poincaré inequality trivially holds. In fact, one only needs Lipschitz charts so that
by Sullivan’s theorem [Su] every compact topological manifold outside dimension four
admits a metric that makes it a Loewner space. See also §6.10 below.

6.2. Carnot groups. Carnot–Carathéodory spaces provide examples of regular Loew-
ner spaces whose Hausdorff dimension exceeds the topological dimension. Roughly, these
are spaces that are locally modelled by a Carnot group. It was in the setting of Carnot
groups where quasiconformal maps beyond Riemannian spaces first appeared. Namely,
the boundaries of rank-one symmetric spaces can be identified as certain Carnot groups
of step two, and Mostow [Mo1] had to develop the basic quasiconformal theory in these
groups in order to reach his celebrated rigidity results.

A Carnot group admits a (1, p)-Poincaré inequality for all p�1 by a result of Jeri-
son [J], and hence is a Loewner space. The Loewner property of a Carnot group was
known before; see [Re] and [H2]. More information about Carnot spaces, Poincaré in-
equalities and quasiconformal maps can be found in [Gr], [HK1], [KR1], [KR2], [MM],
[P1], [P2], [VG], [VSC].

6.3. Riemannian manifolds of nonnegative Ricci curvature. Let M be a complete,
noncompact Riemannian n-manifold, n�2, whose Ricci curvature is nonnegative. Then
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M is a Loewner space if and only if M is n-regular; the latter is equivalent to the existence
of a constant C�1 such that

C−1Rn �µ(BR), (6.4)

where BR is any metric ball of radius R and µ is the Riemannian volume. Recall that
the classical comparison theorem of Bishop implies that we always have the inequality

µ(BR)�ΩnRn (6.5)

for balls BR as above, where Ωn is the volume of the unit ball in Rn; see e.g. [Ch, p. 123].
Thus M is n-regular if it has Euclidean volume growth.

The claim follows from Theorem 5.7 and from the fact that M admits a Poincaré
inequality; the necessity of (6.4) follows from Theorem 3.6. The validity of a (1, 2)-
Poincaré inequality under the above assumptions was proved by Buser [Bu]. There are
several works by several people in this area; see [Ch], [MSC], [SC], and the references
there. (See also [CSC].)

Recently, significant advances have been made in understanding the structure of a
tangent cone M∞ of a manifold M as above (in particular, assume that M has Euclidean
volume growth). See [CC]. Because quasiconformal maps are insensitive to scaling, and
because they easily form compact families, one is led to wonder whether quasiconformal
maps can be used to resolve some issues in the study of the tangent cones. One can show
without much difficulty that if M and N are two manifolds of nonnegative Ricci curvature
and Euclidean volume growth, and if f :M→N is quasiconformal, then the tangent cones
at infinity of M and N are pairwise (quasisymmetrically) homeomorphic in the following
sense: for each tangent cone M∞, there is a tangent cone N∞ and a quasisymmetric
homeomorphism M∞→N∞. This discussion is very general and well known, and it has
nothing to do with Ricci curvature, or even manifolds per se, cf. [GLP]. The perhaps new
observation made here is that if f is a quasiconformal map (in the infinitesimal sense)
between two manifolds M and N as above, then f is globally quasisymmetric, and hence
can be scaled and pushed to a quasisymmetric homeomorphism between appropriate
tangent cones.

6.6. Strong A∞-geometry. The concept of a strong A∞-geometry is due to David
and Semmes [DS1], [S1], [S2]. Intuitively, such a geometry results when one changes
the standard metric in Rn by a conformal factor. The main difference is that we do
not assume this change to be smooth, or even continuous, but rather to hold on to the
minimal requirements that prevent the associated distance function from degenerating.
Assume that µ is a doubling measure in Rn given by a locally integrable density w.
That is, dµ(x)=w(x) dx, where dx is Lebesgue measure in Rn. (Recall the definition for
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doubling measure from §5.3.) We assume here n�2. To each such density, or weight, we
associate the distance function

dw(x, y)=µ(Bxy)1/n =
(∫

Bxy

w(x) dx

)1/n

, (6.7)

where Bxy is the smallest closed Euclidean ball containing x and y. The function dw:
Rn×Rn→R does not generally define a metric in Rn, nor is it even comparable to one.
If there is a metric Dw in Rn and a constant C�1 so that

C−1dw(x, y)�Dw(x, y)�Cdw(x, y) (6.8)

for all x and y in Rn, then w is called a strong A∞-weight. The name derives from the
fact that every strong A∞-weight is an A∞-weight in the sense of Muckenhoupt, while
not every A∞-weight is a strong one. See [DS1], [S1], [S2] for a thorough discussion of
strong A∞-weights.

Let w be a strong A∞-weight and let Dw be a metric satisfying (6.8). Then the
metric space (Rn,Dw) with measure dµ=w dx is n-regular and every two points in it
can be joined by a rectifiable curve [S1].

Theorem 6.9. The n-regular metric space X=(Rn,Dw) associated to a strong
A∞-weight w as above is a Loewner space. The statement is quantitative in that the
function φ only depends on n and on the constants associated with w.

Because X admits the appropriate Poincaré inequalities and is quasiconvex (see
[DS1], [S1], [S4], [S5]), Theorem 6.9 follows from Theorem 5.7.

The space (Rn,Dw) can be quite different from the standard Rn. Semmes [S2] has
given examples of strong A∞-weights w in R3 such that the associated space (R3,Dw) is
not bi-Lipschitz equivalent to the standard R3. Moreover, there is, in some Rn, a strong
A∞-weight w such that the associated space does not admit a bi-Lipschitz embedding
into any Euclidean space. On the other hand, the identity map from (Rn,Dw) to the
standard Rn is always quasisymmetric, and this implies, among other things, quantitative
bounds for the contractibility function of the space (cf. [S3], [S4]).

Semmes [S2] has further shown that every doubling metric space X admits a bi-
Lipschitz embedding into some (Rn,Dw), where w is a strong A∞-weight. Semmes uses
partly a theorem of Assouad [A]. From the point of view of quasiconformal mapping
theory, a bi-Lipschitz change of coordinates is a harmless procedure. Therefore, in light
of the Assouad–Semmes theorem, we could think of all the metric spaces in this paper
as subspaces of (Rn,Dw) for some n and for some strong A∞-weight w in Rn.
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6.10. Uniformly contractible, regular topological manifolds. In an interesting and
massive recent paper [S4], Semmes has verified Poincaré-type inequalities for a large
class of metric spaces.

Let X be a connected and complete n-regular metric space that is also an orientable
topological n-manifold, n�2. Assume that X satisfies the following local linear con-
tractibility condition: there is C�1 so that, for each x∈X and R<C−1diamX, the ball
B(x,R) can be contracted to a point inside B(x,CR).

Theorem 6.11. Under the above assumptions, X admits a (1, p)-Poincaré inequal-
ity for all p�1. In particular, X is a Loewner space. These statements are quantitative
in the usual sense.

The first part of Theorem 6.11 is contained in [S4, Theorem B.10]. The second part
follows from Theorem 5.7. (Note that under these assumptions, X is quasiconvex by [S4,
Theorem B.6].)

Theorem 6.11 covers a wide variety of spaces, including the strong A∞-geometries.
Moreover, the assumption that X be a topological manifold can be relaxed: it suffices to
assume that X is an orientable homology n-manifold, cf. [S4, A.35]. Every finite polyhe-
dron (i.e. a finite simplicial complex) that is an orientable homology n-manifold satisfies
the above assumptions (see [S3, Proposition 1.11]) and hence is a Loewner space. These
and other examples are discussed in the many papers by Semmes [S2], [S3], [S4], [S5].
We reiterate that there are spaces, even finite polyhedra, that satisfy the assumptions of
Theorem 6.11 and are homeomorphic to some Euclidean space, but do not admit even
local bi-Lipschitz or quasisymmetric coordinates.

6.12. Simplicial complexes. It follows from Theorem 6.11 that every finite simplicial
complex that is also a manifold is a Loewner space. In fact, a more general result is true.

Theorem 6.13. Suppose that X is a connected, finite simplicial complex of pure
dimension Q>1 such that the link of each vertex is connected. Then X admits a (1, Q)-
Poincaré inequality. In particular, X is a Q-regular Loewner space.

In the above theorem, we can use in X either the barycentric metric or the metric
X inherits by sitting inside some RN . Simple examples show that as stated this theorem
cannot be made quantitative. Similarly, the assumption on links is necessary.

Theorem 6.13 follows from a yet more general result which will be described in the
next subsection.

6.14. Glueing spaces together. The Loewner condition, or more generally a weak
(1, p)-Poincaré inequality, rather easily survives under unions.
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Suppose that X and Y are two locally compact Q-regular metric measure spaces.
Suppose also that A is a closed subset of X that has an isometric copy inside Y , i.e. there
is an isometric embedding i:A→Y . In the following, we understand this embedding as
fixed and think of A as a closed subset of both X and Y . Then form a space

X∪AY

which is the disjoint union of X and Y with points in the two copies of A identified.
This space has a natural metric which extends the metrics from X and Y : the distance
between x∈X∪AY and y∈X∪AY is

inf
a∈A

|x−a|+|a−y|.

Furthermore, the measures on X and Y add to a measure µ on X∪AY that is evidently
Q-regular. (Note that if X and Y were only doubling spaces, the new space X∪AY is
not necessarily doubling.)

Theorem 6.15. Let X, Y and A be as above. Suppose that there are numbers
Q�s>Q−p and C�1 so that

H∞
s (A∩BR)�C−1Rs (6.16)

for all balls BR either in X or in Y that are centered at A with radius 0<R<

min{diamX,diam Y }. If both X and Y admit a weak (1, p)-Poincaré inequality, then
X∪AY admits a weak (1, p)-Poincaré inequality as well. The statement is quantitative
in the usual sense.

Proof. The proof is based on Theorem 5.9 and Lemma 5.15. Fix a ball B=BR0 in
X∪AY , a continuous function u in B, and a very weak gradient � of u in B. We may
assume that B is centered at a point in A, as is easily seen. By Lemma 5.15 it suffices
to show that

|u(x)−u(y)|�C |x−y|(MR0 �p(x)+MR0 �p(y))1/p (6.17)

for all x, y∈C−1B for some C�1 depending only on the data.
To this end, observe that (6.17) has the correct homogeneity properties so that there

is no loss of generality in assuming that

max
C−1B

u=1 and min
C−1B

u=0.

We assume here for simplicity that the above extreme values are taken at points x and y,
so that u(x)=1 and u(y)=0. We may clearly assume that x∈X and y∈Y , for if both
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points belong to either space, then there is nothing to prove by assumption and by the
necessity part of Lemma 5.15. Next, take a ball B′ in X∪AY that is centered at A, has
radius R comparable to |x−y|, and such that the points x and y are contained in 1

4 B′.
Such a ball B′ clearly exists and can be assumed to lie in B by simply choosing the
constant C above sufficiently large.

Now if either |u(x)−uBX | or |u(y)−uBY | exceeds 1
5 , where BX =B(x, |x−y|) is a

ball in X and BY =B(y, |x−y|) is a ball in Y , then clearly (6.17) holds by (the proof of)
Lemma 5.15. Thus we assume that

|uBY |� 1
5 and |1−uBX |� 1

5 .

It then follows that the sets

AX =
{
w∈BX : u(w)> 3

4

}
and AY =

{
w∈BY : u(w)< 1

4

}
both have measure at least 1

5 of the measure of BX and BY , respectively. But the
measures of these two balls are comparable to RQ by the regularity assumption. Therefore
we find that

min{H∞
Q (AX∩B′),H∞

Q (AY ∩B′)}�C−1RQ,

and hence that
min{H∞

s (AX∩B′),H∞
s (AY ∩B′)}�C−1Rs. (6.18)

(We leave this latter deduction to the reader to verify.) Note that AX∪AY belongs to
B′ because x and y belong to 1

4 B′.
Next, consider the sets

A1 =
{
w∈A∩B′ : u(w)< 1

2

}
, A2 =(A∩B′)\A1.

By assumption, one of these two sets has to have s-content at least C−1Rs both as a
subset of X and as a subset of Y . Say A1 does. (The opposite case is similar.) The
function v=4

(
u− 1

2

)
satisfies v�1 on AX and v�0 on A1, and it has 4� as its very weak

gradient in B. We combine this observation with (6.18) and deduce from Theorem 5.9
that

1�CRp−Q

∫
B

�p dµ�CRpMR0 �p(x)�C|x−y|pMR0 �p(x),

as desired. Note that we may assume R�R0. This completes the proof of Theorem 6.15.

Remark 6.19. (a) Theorem 6.15 can be used to produce a variety of examples of
spaces that admit a Poincaré inequality. Some of these are quite amusing. Take, for
instance, X to be R4 with its standard metric and Y to be the first Heisenberg group
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H1 with its Carnot metric. Then both spaces are 4-regular. Glue them along a geodesic,
i.e. along an isometric copy of R. The resulting space X∪RY admits a (1, p)-Poincaré
inequality for all p>3. (It does not admit a weak (1, 3)-Poincaré inequality, cf. (b) below.)
It is a Loewner space, too. Notice that locally the topological dimension of X∪RY is
different at different places.

(b) One can use Theorem 6.15 to show that the spaces that admit a weak (1, p)-
Poincaré inequality are strictly ordered by p. In fact, given 1�q<p�n, there is an
n-regular Riemannian n-manifold M that admits a weak (1, p)-Poincaré inequality but
does not admit a weak (1, q)-Poincaré inequality.

We sketch the proof for this claim. Let 1�q<p�n. Take a suitable closed Cantor-
type set A in Rn such that A has zero Hausdorff (n−q)-measure but the estimate

H∞
s (A∩BR)�C−1Rs

holds for all balls BR centered at A, for some n−q>s>n−p. Then glue two copies of
Rn along A. The resulting space admits a (1, p)-Poincaré inequality by Theorem 6.15.
However, it is well known that H∞

n−q(A)=0 implies that A has zero q-capacity in Rn (see
e.g. [HKM, Chapter 3]). In particular, there are continuous functions φ in the Sobolev
class W 1,q(Rn) with arbitrarily small W 1,q-norm such that φ|A=1. By extending such
a function φ to be identically 1 in the second copy of Rn, we see that no (1, q)-Poincaré
inequality is possible in Rn∪ARn.

We leave it to the reader to modify this example so that X can be taken to be a
smooth manifold.

One can furthermore show that there are spaces that satisfy, for a given p>1, a
(1, p)-Poincaré inequality, but do not satisfy a (1, q)-Poincaré inequality for any q<p [K].

(c) In §8, we show that under certain additional assumptions on a Q-regular space,
the validity of a (1, Q)-Poincaré inequality is a quasisymmetric invariant. The example
in (b) shows that the same statement is not true for p<n. Simply take a quasiconformal
map of Rn that transforms one self-similar Cantor set of dimension s to another self-
similar Cantor set of dimension q, where 1�q<s<n.

7. Absolute continuity of quasisymmetric maps

In this section, we show that a quasisymmetric map f :X→Y between two locally com-
pact Q-regular metric spaces induces a measure in X that is A∞-related to the Hausdorff
Q-measure in X, provided that Q>1 and that X admits a (1, p)-Poincaré inequality for
some p<Q. This generalizes Gehring’s well-known result [G3]. For earlier extensions of
Gehring’s theorem, see [DS1], [S1] and [KR2].
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Notice that by the results of the previous sections, with some (mild) additional as-
sumptions added on X and Y , we could equivalently assume that f is only quasiconformal
in the sense of Definition 1.2. We prefer to assume quasisymmetry at the outset here.

7.1. A∞-weights. Let (X,µ) be a metric measure space as in §2.1 and assume that
µ is a doubling measure (Definition 5.3). Assume also that X is locally compact. Let σ

be another doubling Borel measure in X. Then σ is said to be A∞-related to µ if for
each ε>0 there is δ>0 such that

µ(E)<δµ(B) implies σ(E)<εσ(B)

whenever E is a measurable subset of a ball B. Clearly σ is absolutely continuous with
respect to µ if σ is A∞-related to µ, so that dσ=w dµ for some nonnegative locally
µ-integrable weight function w. It turns out that if σ is A∞-related to µ, then µ is
A∞-related to σ, and that this symmetric relationship between two doubling measures
can be expressed in various equivalent ways [ST], [St2]. Consider the following reverse
Hölder inequality:

There is a locally µ-integrable function w in X together with constants C�1 and
p>1 so that dσ=w dµ and (∫

B

wp dµ

)1/p

�C

∫
B

w dµ (7.2)

whenever B is a ball in X.
It is well known that a doubling measure σ is A∞-related to µ if and only if (7.2) is

satisfied. This is a quantitative statement. See e.g. [CF] or [ST, Chapter I].
Condition (7.2) has the following important self-improving character.

Gehring’s Lemma 7.3. If a weight w satisfies (7.2), then there is ε>0 such that(∫
B

wp+ε dµ

)1/(p+ε)

�C

∫
B

w dµ (7.4)

whenever B is a ball in X. The constants ε and C depend only on the constants appearing
in (7.2) and on the doubling constant of µ.

The original proof due to Gehring [G3] in Rn can be extended to this more general
setting; see e.g. [ST, p. 6].

7.5. Volume derivative of a quasisymmetric map. Let X and Y be two Q-regular
metric measure spaces as in §2.1. Denote the Hausdorff Q-measure in both spaces by HQ,
and to keep the notation simple, we write

|A|=HQ(A), dx= dHQ(x).
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Suppose now that f :X→Y is an η-quasisymmetric homeomorphism between X and Y

as defined in (4.5). By the Lebesgue–Radon–Nikodym theorem, the volume derivative

µf (x)= lim
r→0

|f(B(x, r))|
|B(x, r)| (7.6)

exists and is finite for almost every x in X; it is locally integrable and satisfies

∫
E

µf (x) dx� |f(E)| (7.7)

for every measurable subset E of X, with equality if and only if f is absolutely continuous.
The paramount reference to the basic measure theory is [Fe].

7.8. Maximum derivative of a quasisymmetric map. Next we introduce another func-
tion, which describes the local stretching of f . The situation is assumed to be as in §7.5.
For x∈X write

Lf (x)= lim sup
r→0

Lf (x, r)
r

, (7.9)

where Lf (x, r) is defined in (4.2). It is not difficult to see that Lf is a Borel-measurable
function in X. Moreover, by the Q-regularity of X and Y , and by the quasisymmetry
of f , we find that (

Lf (x, r)
r

)Q

�C
|f(B(x, r))|
|B(x, r)|

for 0<r<diam X. Therefore

Lf (x)Q �Cµf (x) (7.10)

for almost every x in X, where C depends only on the quasisymmetry function η of f

and on the constants associated with the Q-regularity of X and Y . With an obvious
abuse of language, we call the function Lf the maximum derivative of a quasisymmetric
map f .

Theorem 7.11. Suppose that X and Y are locally compact Q-regular spaces for
some Q>1 and that X admits a weak (1, p)-Poincaré inequality for some p<Q. Let f

be a quasisymmetric map from X onto Y . Then the pull-back measure σf ,

σf (E)= |f(E)|, E ⊂X,

is A∞-related to the Hausdorff Q-measure HQ in X. Moreover,

dσf =µf dx
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with µf (x)>0 for HQ-almost every x in X, and there is ε>0 such that

(∫
B

µ1+ε
f dx

)1/(1+ε)

�C

∫
B

µf dx (7.12)

for all balls B in X. The statement is quantitative in that all the constants involved
in the conclusion depend only on the quasisymmetry constant of f , on the constants
associated with the Q-regularity of X and Y , and on the constant appearing in the
Poincaré inequality.

Corollary 7.13. Under the assumptions of Theorem 7.11,

|E|=0 if and only if |f(E)|=0

for E⊂X. In other words, both f and its inverse are absolutely continuous.

Because, in the situation of Theorem 7.11, LQ
f and the volume derivative are com-

parable for quasisymmetric maps, we also have the following reverse Hölder inequality
for the maximum derivative as well.

Corollary 7.14. Under the assumptions of Theorem 7.11, there is q>Q such that

(∫
B

Lq
f dx

)1/q

�C

(∫
B

LQ
f dx

)1/Q

<∞

for all balls B in X. The statement is quantitative similarly to Theorem 7.11.

We do not know whether Theorem 7.11 remains true if X satisfies a weak (1, Q)-
Poincaré inequality only, cf. Remark 8.7.

To prove Theorem 7.11, we shall show that the reverse Hölder inequality (7.12) holds
for the volume derivative. This suffices in view of the discussion in §7.1. In the following,
let f :X→Y be an η-quasisymmetric map between two Q-regular metric spaces with
Q>1. For ε>0 define

Lε
f (x)= sup

0<r�ε

Lf (x, r)
r

. (7.15)

Clearly Lε
f (x) decreases as ε decreases, and

lim
ε→0

Lε
f (x)=Lf (x), ε→ 0,

for each x∈X by the definition of Lf . Fix a ball B=B(x0, R) in X with R<diamX.
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Lemma 7.16. There is a constant C=C(η)�1 such that, for each ε>0, the function
CLε

f is a very weak gradient of the function u(x)=|f(x)−f(x0)| in B.

Proof. Fix ε>0 and let γ be a rectifiable curve joining two points x and y in B.
Suppose first that d=diam γ�ε. Then for each z∈γ we have

Lε
f (z)� Lf (z, d)

d
�C−1 Lf (x, d)

d

by quasisymmetry. Thus

∫
γ

Lε
f ds�C−1 Lf (x, d)

d
l(γ)�C−1Lf (x, d)�C−1|f(x)−f(y)|

�C−1| |f(x)−f(x0)|−|f(y)−f(x0)| |=C−1|u(x)−u(y)|.

If d=diam γ>ε, then pick successive points x0, ..., xN from γ such that x0=x, xN =y,
and such that the diameter of γi, the portion of γ between xi−1 and xi, is less than ε for
i=1, ..., N . As above,

∫
γ

Lε
f ds=

N∑
i=1

∫
γi

Lε
f ds�C−1

N∑
i=1

|f(xi)−f(xi−1)|

�C−1|f(x)−f(y)|�C−1|u(x)−u(y)|.

The lemma follows.

Remark 7.17. Note that the above proof gives

|f(x)−f(y)|�C(η)
∫

γ

Lε
f ds (7.18)

for all points x and y in X and all rectifiable curves γ joining these points. It is important
to notice that (7.18) is not necessarily true when Lε

f is replaced with Lf , for f need not be
absolutely continuous on rectifiable curves. In other words, it may well happen that Lε

f

is not integrable on such a curve. The next lemma tells us however that Lε
f is integrable

against the volume measure.

Lemma 7.19. The function Lε
f belongs to the space weak-LQ(B) with norm inde-

pendent of ε, provided ε is small enough. More precisely, for ε< 1
10 R and t>0 we have

that

|{x∈B : Lε
f (x)>t}|�Ct−Q|f(B)|, (7.20)
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where C�1 depends only on η and the data of X and Y . A fortiori, the function Lf

belongs to weak-LQ(B) with norm depending only on the data.

Proof. Denote by Et the set of points x in B where Lε
f (x)>t. Then by Covering

Lemma 5.5, we can find a countable collection of disjoint balls Bi=B(xi, ri) such that
0<ri�ε,

Lf (xi, ri)
ri

>t

and
Et ⊂

⋃
5Bi ⊂ 2B.

Thus, by quasisymmetry and Q-regularity,

|Et|�C
∑

rQ
i �Ct−Q

∑
Lf (xi, ri)Q

�Ct−Q
∑

|f(Bi)|�Ct−Q|f(2B)|�Ct−Q|f(B)|,

as desired. Finally, because Lf �Lε
f , the lemma follows.

Corollary 7.21. For 1�s<Q and 0<ε< 1
10 R, the function Lε

f is in Ls(B) with

‖Lε
f‖s �C|B|(Q−s)/Qs|f(B)|1/Q, (7.22)

where C�1 depends only on s, η and the data of X and Y . A similar statement is true
for Lf .

Proof of Theorem 7.11. We shall show that Lf satisfies the reverse Hölder inequality(∫
B

LQ
f dx

)1/Q

�C

(∫
B

Lp
f dx

)1/p

, (7.23)

where p<Q is as in the assumptions. The claim follows from this and Corollary 7.21 via
Gehring’s Lemma 7.3, because the Qth power of the maximum derivative is comparable
to the volume derivative by quasisymmetry (see (7.10)). Remember that we have fixed
a ball B=B(x0, R)⊂X with R<diam X. The constant C�1 in (7.23) does not depend
on B.

Because X is assumed to admit a weak (1, p)-Poincaré inequality and because CLε
f

is a very weak gradient of the function u(x)=|f(x)−f(x0)| in B by Lemma 7.16, we have
that ∫

B′
|u(x)−uB′ | dx�C diamB

(∫
B

Lε
f

p dx

)1/p

,

where B′=C−1
0 B, cf. (5.2). Therefore, in fact,∫

B′
|u(x)−uB′ | dx�C diamB

(∫
B

Lp
f dx

)1/p

, (7.24)
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by (7.22) and the Lebesgue Convergence Theorem. On the other hand,

uB′ =
∫

B′
|f(x)−f(x0)| dx� 1

|B|

∫
B′\ 1

2 B′
|f(x)−f(x0)| dx

�C−1Lf (x0, R)

∣∣B′\ 1
2B′∣∣

|B| �C−1
1 Lf (x0, R)

because
Lf (x0, R)�C |f(x)−f(x0)|

for x∈B′\ 1
2B′ by quasisymmetry. For sufficiently small δ>0, we similarly have that

u(x)= |f(x)−f(x0)|� η(δ)Lf (x0, R)� (2C1)−1Lf (x0, R)

for x∈δB′, where C1>0 is as above, and so

|u(x)−uB′ |� (2C1)−1Lf (x0, R)

for x in δB′. Consequently,∫
B′
|u(x)−uB′ | dx�

∫
δB′

|u(x)−uB′ | dx�C−1Lf (x0, R)|B|,

where C�1 depends only on η and the data associated with X. Combining this with
(7.24) gives

Lf (x0, R)
R

�C

(∫
B

Lp
f dx

)1/p

. (7.25)

Finally, we invoke the Lebesgue inequality (7.7) which together with (7.10) and (7.25)
implies (∫

B

LQ
f dx

)1/Q

�C

(∫
B

µf dx

)1/Q

�C

(
|f(B)|
|B|

)1/Q

�C
Lf (x0, R)

R
�C

(∫
B

Lp
f dx

)1/p

.

(7.26)

This is (7.23), and the proof of Theorem 7.11 is complete as soon as we can show that
there is an equality in (7.7); that is, we need to show that f is absolutely continuous.
Notice that the A∞-theory does guarantee that µf is positive almost everywhere, cf. [CF].

The absolute continuity of f follows basically from the second line in formula (7.26);
it implies by quasisymmetry and by Hölder’s inequality that

(diam f(B))Q �C

∫
B

LQ
f dx (7.27)
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for all balls B in X. Because Lf is locally in LQ, (7.27) implies the claim by standard
arguments. Indeed, for bounded open sets U , a covering argument and quasisymmetry
together with (7.27) give

|f(U)|�C

∫
U

LQ
f dx,

from which the claim follows as every set of measure zero in X is contained in an open
set of arbitrarily small measure [F, 2.2.2].

This completes the proof of Theorem 7.11.

Remark 7.28. Stephen Semmes pointed out to us that Theorem 7.11 admits a gen-
eralization as follows. Suppose that (X,µ) is a locally compact Q-regular space for some
Q>1 and suppose that X admits a weak (1, p)-Poincaré inequality for some p<Q. Sup-
pose next that σ is a metric doubling measure in X; this means that σ is doubling and
that there is a metric Dσ in X such that Dσ(x, y) is comparable to σ(B(x, |x−y|))1/Q

(equivalently, to σ(B(y, |x−y|))1/Q) with constants independent of x and y, cf. the dis-
cussion in §6.6.

The conclusion then is that there is a locally µ-integrable density w in X such that
dσ=w dµ and that w satisfies the reverse Hölder inequality (7.2). Moreover, the space
(X,σ,Dσ) is a Q-regular space admitting a weak (1, q)-Poincaré inequality for some
p�q<Q.

This assertion for X=Rn was proved in [DS1]; see also [S1], [S5]. Note that it extends
Gehring’s theorem to the case where no maps are present; Theorem 7.11 follows by
substituting σf =σ above. The main point is to change the function u(x)=|f(x)−f(x0)|
to Dσ(x, x0) in the proof of Theorem 7.11. There is also the issue of “smoothing”,
cf. (7.15); the arguments in [S1] are helpful here.

It is interesting to note that when X=Rn, then one can have p=q=1 in the above
conclusion, so there is no loss in the exponent after the deformation of metric [DS1]. In
general, one has to allow for values q>p, as follows from Remark 6.19 (c). It would be
interesting to find general conditions under which q=p is an admissible choice.

8. Quasisymmetric invariance of Loewner spaces

We do not know whether the Loewner condition is a quasisymmetric invariant of an
Ahlfors–David regular metric space. Basically, the lack of Fuglede’s theorem prevents
us from drawing this conclusion. Recall that in Rn, Fuglede’s theorem says that W 1,p-
Sobolev maps are absolutely continuous on p-modulus a.e. curve [Fu]. Pansu [P1], [P2]
proved that quasisymmetric maps enjoy the same property in spaces that can be foliated
by curves in a suitable way. See also [MM].
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We shall show next that Fuglede’s theorem holds for quasisymmetric maps between
Q-regular spaces where an appropriate Poincaré inequality holds. The quasisymmetric
invariance of the Loewner condition then follows under these assumptions. The situation
here is similar to that in the previous section.

As in §7, we use the notation |E|=HQ(E) and dx=dHQ.

Theorem 8.1. Suppose that f is a quasisymmetric map between two Q-regular,
locally compact metric spaces X and Y , where Q>1. Suppose furthermore that X admits
a (1, p)-Poincaré inequality for some p<Q. Then f is absolutely continuous on Q-almost
every curve in X.

The conclusion of Theorem 8.1 means that the curve family

Γ0 = {γ: I →X : f �γ: I →Y is not absolutely continuous} (8.2)

has zero Q-modulus in X. Recall that a rectifiable curve γ: I→X is absolutely continuous
if H1(E)=0 implies H1(γ(E))=0 for E⊂I; this is equivalent to saying that s′γ >0 a.e.
on I, where sγ : I→[0, l(γ)] is the reparametrization of γ as explained in §2.2.

Proof of Theorem 8.1. The issue is obviously local, so fix a small ball B in X. It
follows from Theorem 7.11 that the maximum derivative Lf of f is in Lq(B) for some
q>Q. We claim that for ε< 1

20 diamB the function Lε
f is in Ls(B) for all s<q, where

Lε
f is defined in (7.15). In fact, the covering argument in Lemma 7.19 together with

Corollary 7.14 gives that

|{x∈B : Lε
f (x)>t}|�C

∑
rQ
i

�Ct−q
∑

rQ
i

L(xi, ri)q

rq
i

�Ct−q
∑

rQ
i

(
|f(Bi)|
|Bi|

)q/Q

=Ct−q
∑

rQ
i

(∫
Bi

µf dx

)q/Q

�Ct−q
∑

rQ
i

∫
Bi

Lq
f dx

�Ct−q

∫
B

Lq
f dx.

It follows that Lε
f is in weak-Lq(B), and hence in Ls(B) for all s<q.

Fix ε as above, and pick a curve γ from Γ0, where Γ0 is defined in (8.2). We can
assume that all curves from Γ0 lie in B and are locally rectifiable. Then∫

γ

Lε
f ds=∞, (8.3)

for otherwise
|f(x)−f(y)|�C

∫
γxy

Lε
f ds<∞ (8.4)
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for any subcurve γxy of γ joining two points x and y (cf. Remark 7.17). In particular,
(8.4) implies that f is absolutely continuous on γ, which is a contradiction. Thus (8.3)
holds. It follows that λLε

f is an admissible function for Γ0 for any λ>0. Because Lε
f is

in LQ(B), we conclude that modQ Γ0=0, and the proof of Theorem 8.1 is complete.

Theorem 8.5. Suppose that f is a quasisymmetric map between two Q-regular,
locally compact metric spaces X and Y , where Q>1. Suppose furthermore that X is
a Loewner space that admits a (1, p)-Poincaré inequality for some p<Q. Then Y is a
Loewner space. In particular, Y satisfies a weak (1, Q)-Poincaré inequality.

Proof. By quasisymmetry, it suffices to show that

modQ(E,F ;X)�C modQ(f(E), f(F );Y ) (8.6)

whenever E and F are two disjoint continua in X. Indeed, it then follows from (3.2)
that Y is a Loewner space, and the second assertion comes from Theorem 5.12.

To this end, let �′ be an admissible function for (f(E), f(F );Y ). Let γ be a rectifiable
path joining E and F in X, parametrized by the arc length. We may assume that f is
absolutely continuous on γ by Theorem 8.1. Write

�(x)= �′�f(x)Lf (x).

Standard arguments using the absolute continuity then give that

∫
γ

� ds=
∫ l(γ)

0

�′�f(γ(s))Lf (γ(s)) ds�
∫

f�γ

�′ ds� 1.

Thus � is admissible for (E,F ;X), and hence

modQ(E,F ;X)�
∫

X

�(x)Q dx�C

∫
X

�′�f(x)Qµf (x) dx=C

∫
Y

�′(y)Q dy.

Here the middle inequality follows because Lf (x)Q�Cµf (x) almost everywhere, and the
last, by standard arguments, because f is absolutely continuous (cf. (7.7)). Because �′

was arbitrary, and because C�1 only depends on the data, the theorem follows.

Remark 8.7. (a) We conjecture that the Loewner condition is preserved under quasi-
symmetric maps between locally compact Q-regular spaces, Q>1. It is possible that the
validity of a weak (1, Q)-Poincaré inequality is similarly preserved, cf. Remark 6.19 (c).
(Added in July 1997: Tyson [Ty] has recently verified this conjecture. It also follows
from his work and from Theorems 5.7 and 5.12 that a weak (1, Q)-Poincaré inequality is
preserved if the spaces in question are proper and ϕ-convex.)
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(b) Theorem 8.5 can be strengthened. MacManus and the second author [KM] have
recently established that, under the assumptions of Theorem 8.5, the space Y admits
a (1, q)-Poincaré inequality for some p�q<Q. This also follows from the remark made
by Semmes in Remark 7.28. Moreover, Koskela and MacManus have shown that (1, p)-
Poincaré inequalities for p>Q are not quasisymmetric invariants in the following sense:
given p>2 there is a compact geodesic 2-regular space X that admits a (1, p)-Poincaré
inequality and there is a quasisymmetric map f from X onto another 2-regular space
Y that does not admit a (1, q)-Poincaré inequality for any q>2; moreover, the pullback
measure under f is A∞-related to the Hausdorff 2-measure on X.

9. Quasiconformal maps and Sobolev spaces

The Sobolev space theory occupies a central role in the quasiconformal analysis in Rn,
and it is natural to ask how the maps considered in this paper fit in to more general
Sobolev space theories. In this last section, we consider two generalizations of classical
Sobolev spaces. One is due to Haj�lasz [Ha], and the other to Korevaar and Schoen [KS].
The results here are basically corollaries of the results in the previous sections.

9.1. Sobolev spaces of Haj�lasz. In [Ha] Haj�lasz defined, for any metric measure space
(X,µ) of finite diameter, the Sobolev space W 1,p(X) for 1<p<∞ to be the set of all
real-valued measurable functions u in Lp(X) such that there is an Lp(X)-function g with
the property that

|u(x)−u(y)|� |x−y|(g(x)+g(y)) (9.2)

whenever x and y lie outside some set of measure zero. If X is a smoothly bounded
domain in some Euclidean space, then W 1,p(X) as defined above identifies with the
standard Sobolev space; a natural choice for g in this case is an appropriate maximal
function of |∇u|. See [Ha] for a more complete discussion.

Theorem 9.3. Suppose that X and Y are locally compact, Q-regular metric spaces
for some Q>1, and suppose that X admits a (1, p)-Poincaré inequality for some p<Q.
If f is a quasisymmetric map from X onto Y , then there is q>Q such that the func-
tion u(x)=|f(x)−f(x0)| belongs to the Sobolev space W 1,q(B) of Haj�lasz whenever B=
B(x0, R) is a ball in X.

The statement is quantitative in that q depends only on the quasisymmetry constant
of f and the data associated with X.

Remark 9.4. Under mild additional assumptions on X and Y , we could have stated
Theorem 9.3 for quasiconformal maps in the sense of (1.3), cf. §4.
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Proof. By the proof of Theorem 7.11, we have the following weak Poincaré inequality

∫
B

|u(x)−uB | dµ�C diamB

(∫
CB

Lp
f dµ

)1/p

, (9.5)

where Lf is the maximum derivative of f as defined in (7.9), and where p<Q is as in the
assumptions. Although Lf need not be a very weak gradient of u, we still obtain from
(9.5), by using a chaining argument as in the proof of Lemma 5.15, that the estimate

|u(x)−u(y)|�C |x−y|(MCR Lp
f (x)+MCRLp

f (y))1/p

holds for all pair of points x, y in C−1B. Here MCR is the restricted maximal function
defined in (5.14). Because MCR maps Ls(B) to Ls(B) for s>1 (see [St, Chapter 1]), and
because Lf belongs to Lq(B) for some q>Q by Theorem 7.11, we conclude that u lies in
the Sobolev space W 1,q(C−1B). Because B was an arbitrary ball in X, the factor C−1

can be ignored. Theorem 9.3 follows.

9.6. Sobolev spaces of Korevaar and Schoen. In [KS] Korevaar and Schoen considered
Sobolev spaces W 1,p(Ω;X) of maps u from a Riemannian domain Ω into a complete
metric space X.

Theorem 9.7. Suppose that Ω is a connected, open subset of a Riemannian n-
manifold M such that its metric completion �Ω is a compact subset of M . Suppose
that n>1 and that f is a quasiconformal map of Ω onto a linearly locally connected
(Definition 3.12) n-regular metric space X. Then there is q>n such that f∈W 1,q(Ω;X),
where W 1,q(Ω;X) is the Sobolev space of Korevaar and Schoen.

The statement is quantitative in that q depends only on H in Definition 1.2 and on
the data associated with X.

Let us quickly recall the definition for W 1,p(Ω;X) as given in [KS]. For a map u

from Ω into X, for points x and y in Ω, and for ε>0, write

eε(x, y;u)=
|u(x)−u(y)|

ε
.

Then for 1�p<∞ the (nonnormalized) averaged ε-approximate density function is

ep
ε(x;u)=

∫
B(x,ε)

ep
ε(x, y) dy,

where dy denotes the Riemannian measure on Ω. We also require that dist(x, ∂Ω)>ε.
Next, for each compactly supported function ϕ on Ω, write

Ep
ε (ϕ;u)=

∫
Ω

ϕ(x)ep
ε(x;u) dx
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whenever ε is positive and small enough. The map u is said to be in the Sobolev space
W 1,p(Ω;X) if there is a constant E(u)<∞ so that

lim sup
ε→0

Ep
ε (ϕ;u)�max |ϕ|E(u) (9.8)

for all compactly supported continuous real-valued functions ϕ in Ω.

Proof of Theorem 9.7. Because �Ω is compact in M , we may assume that Ω is small
enough so that a (1, 1)-Poincaré inequality holds there. It then follows, because X is
assumed to be linearly locally connected, that f is quasisymmetric in Ω (§§ 4 and 5).
Let q>n be an exponent such that the volume derivative µf , defined in (7.6), belongs to
Lq/n(Ω) (see Theorem 7.11). We shall show that this choice of q will do here.

To this end, we estimate the average eε(x; f)q by using the quasisymmetry of f as
follows:

eq
ε(x)=

∫
B(x,ε)

|f(x)−f(y)|q
εq

dy � ε−qLf (x, ε)q

�Cε−q

(∫
B(x,ε)

µf dy

)q/n

�C

(∫
B(x,ε)

µf dy

)q/n

�CMµf (x)q/n,

where Mµf is the Hardy–Littlewood maximal function of the volume derivative µf .
(Recall the definition for Lf (x, ε) from (4.2).) Because the volume derivative belongs to
Lq/n(Ω), where q/n>1, the maximal function belongs to Lq/n(Ω) as well (note that �Ω is
a compact subset of a Riemannian manifold so that the maximal function operator maps
Lp to Lp for p>1). In conclusion,∫

Ω

ϕ(x)eq
ε(x; f) dx�C

∫
Ω

ϕ(x)Mµf (x)q/n dx

for any compactly supported continuous function ϕ in Ω. Because the right-hand side is
dominated by

C max |ϕ|
∫

Ω

Mµf (x)q/n dx,

we arrive at the desired conclusion (9.8). The theorem follows.
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Progr. Math., 83. Birkhäuser, Boston, MA, 1990.

[GLP] Gromov, M., Structures métriques pour les variétés riemanniennes. Edited by J. La-
fontaine and P. Pansu. Textes Mathématiques, 1. CEDIC, Paris, 1981.
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P.O. Box 35
FIN-40351 Jyväskylä
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