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9 Persistence of the Poincaré Inequality Under Limits 484

10 Infinitesimal Generalized Linearity 486

11 Small Scale and Infinitesimal Structure 492

12 Norms on T ∗Z and Length Space Metrics 494

13 Hausdorff Measure 497

14 Subsets of RN and Bi-Lipschitz Nonimbedding 501

15 (ε, δ)-Inequalities and Thickly Minimally Connected Spaces 504

16 Quantitative Behavior of Almost Generalized Linear Functions 508

17 Appendix: Quasi-convexity 513

The author was partially supported by NSF Grant DMS 9303999.



Vol. 9, 1999 DIFFERENTIABILITY OF LIPSCHITZ FUNCTIONS 429

0 Introduction

In this paper, we extend to certain metric measure spaces, much of that
part of calculus which concerns first derivatives. In particular, we give
a generalization of the theorem of Rademacher which asserts that a real
valued Lipschitz function on Rn is differentiable almost everywhere with
respect to Lebesgue measure; see [R]. Thus, we show that in a suitably
generalized sense, at almost all points, the blow ups of a real valued Lip-
schitz function converge to a unique linear function. As a consequence, it
follows that the underlying space possesses a degree of small scale and in-
finitesimal regularity. There are many natural examples of spaces to which
our discussion applies, including fractal spaces of Hausdorff dimension, d ,
for every real number, 1 < d <∞; see [Bo], [BoP], [Gro2], [L].

When specialized to Rn, our generalized notion of differentiability co-
incides with the usual one; see Theorems 4.38, 8.11, 10.2. In particular,
our results provide a proof of the classical Rademacher theorem, which al-
though far from being the most direct, is genuinely new; see Remark 16.36
for further discussion. More significantly, we give an explanation for the
validity of Rademacher’s theorem, on the basis of simple general conditions.

Our most basic assumptions are that Z is a metric space and that µ is a
Borel regular measure on Z. From now on, we consider only Borel regular
measures which are finite and nonzero on balls of finite nonzero radius.

It is perhaps surprising that there exists a partial generalization of
Rademacher’s theorem in which the only assumption is that the measure,
µ, satisfies the Vitali covering theorem; see Theorem 3.7. However, for such
spaces, there might not exist any rectifiable curves. If there do not exist
“sufficiently many” such curves (as measured with respect to µ) the conclu-
sion of our partial generalization holds for trivial reasons at all points, and
hence, does not give any nontrivial constraint. The Vitali covering theorem
holds for any Radon measure on Rn and even for some Gaussian measures
on Hilbert space; see Chapter 2 of [Ma] and the references therein.

Recall in particular, that the Vitali covering theorem is implied by the
doubling condition on the measure µ. The doubling condition holds it for
all 0 < r′, there exists κ = κ(r′), such that for all z ∈ Z and 0 < r < r′,

µ(Br(z)) ≤ 2κµ(Br/2(z)) . (0.1)
(If κ can be chosen independent of r we would say that a global doubling
condition holds, but our present considerations are essentially local in na-
ture.)

Given (0.1) and the existence of a weak Poincaré inequality of type (1, p),
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for some 1 ≤ p <∞, we prove two results which when taken together and
specialized to Euclidean space, immediately imply the classical theorem of
Rademacher; see Theorems 4.38, 10.2. The Poincaré inequality (see (4.3))
is formulated in terms of the notion of “upper gradient”, introduced in
[HeKo2] and reviewed in section 1.

A geometric condition which is sufficient (and close to being necessary)
for a Poincaré inequality to hold is (roughly speaking) that there exists a
“thick” family of “not too long” paths between each pair of points; see [Se3].
This condition will not play a direct role in the approach adopted here;
compare however sections 15, 16, where a refined version of this condition is
assumed in order to obtain certain quantitative results; see Definition 15.15.

Recall that Z is called λ-quasi-convex if for all z1, z2 ∈ Z, there exists a
rectifiable curve from z1 to z2 of length at most the λz1, z2, where z1, z2 de-
notes the distance from z1 to z2. Canonically associated to a λ-quasi-convex
metric, is a length space metric, which is λ-bi-Lipschitz to the original one.

According to an observation of David and Semmes, if Z is complete and
(Z,µ) satisfies a doubling condition and weak Poincaré inequality, then ev-
ery ball, Br(z), with 0 < r < r′, is c(κ,C)-quasi-convex, with κ = κ(r′)
as in (0.1) and C = C(r′), the constant in the weak Poincaré inequality;
see (4.3). Thus, if the doubling condition and Poincaré inequality hold,
then for considerations which are invariant under c(κ,C)-bi-Lipschitz equiv-
alence, it suffices to assume that Z is a length space; compare also the proof
of Theorem 6.1.

For completeness, a proof of the result of David-Semmes (essentially
the one which was communicated to the author by Stephen Semmes) will
be given in the Appendix; compare also the discussion just after Proposi-
tion 6.12 of [DSe2] and see Lemma 2.38 of [Se5] for Semmes’ exposition.

Examples of Ahlfors regular (and in particular, doubling) fractal length
spaces, of integral Hausdorff dimension for which the Poincaré inequality
holds, are provided by the Carnot-Caratheodory spaces of [Gro2]. As shown
in [BoP], corresponding examples of nonintegral Hausdorff dimension are
given by the boundaries of certain 2-dimensional hyperbolic buildings. In
[L], T.J. Laakso constructs (by hand) spaces with these same properties in
every Hausdorff dimension d , for 1 < d < ∞. His spaces are obtained as
quotients by finite to one maps, of products of intervals with various Cantor
sets. None of the above mentioned fractal spaces admits a bi-Lipschitz
imbedding into RN , for any N ; see section 14 and [Se4].

For r > 0, put fr,x = (f−f(x))/r. To say that a function, f : Rn → R,
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is differentiable at x ∈ Rn means the following. If we rescale the distance
on Rn, replacing d by r−1d, then as r → 0, the functions, fr,x, converge
uniformly on compact subsets, to a unique limit function, f0,x, on the
tangent space at x. Moreover, the limit function, f0,x is linear.

Since in Euclidean space, any two balls with the same center can be
identified via radial projection, one can define unambiguously the sense in
which the limit function is unique.

Let xi denote the i-th coordinate function. A second way of expressing
the uniqueness condition in the definition of differentiability is to say that
there exist constants b1, . . . , bn, such that

lim sup
r→0

sup
Br(x)

∣∣− fr,x + b1(x1)r,x + · · ·+ bn(xn)r,x
∣∣ = 0 (0.2)

Indeed, if (0.2) holds and for some a1, . . . , an, we have
lim inf
r→0

sup
x,x=r

∣∣− fr,x + a1(x1)r,x + · · ·+ an(xn)r,x
∣∣ = 0 , (0.3)

then
lim inf
r→0

sup
x,x=r

∣∣(b1 − a1)(x1)r,x + · · ·+ (bn − an)(xn)r,x
∣∣ = 0 , (0.4)

which implies, ai = bi, for all i.
Note that strictly speaking, the second formulation of uniqueness is

a relative one; to recover first, we must use the fact that convergence to
unique limit function, (xi)0,x, has an unambiguous meaning for the func-
tions, (xi)r,x, and does hold for these functions.

If we take the view point that by definition, linear limit functions are
precisely those which are linear combinations of limit functions, (xi)0,x, then
(0.2), in addition to implying the relative uniqueness of the limit function,
implies the linearity of f0,x as well. More generally, we would say that fr,x
is asymptotically linear (or f is asymptotically linear at x) if (0.2) holds,
with the constants, bi, replaced by bounded functions, bi(r). However, this
virtually tautologous characterization of asymptotic linearity suggests no
immediate generalization. Thus, we will require a characterization which
is more intrinsic in nature.

For Z a metric space, z ∈ Z, the functions, fr,z, are defined as above.
Our partial generalization of Rademacher’s theorem asserts that if Z is
a metric space and µ satisfies the Vitali covering theorem, then for any
Lipschitz function, f , and µ-a.e. z ∈ Z, the function, fr,z, is asymptotically
generalized linear (which concept is expained below); see Theorem 3.7.

Under the additional assumptions that µ is doubling and a Poincaré
inequality holds, we prove an assertion which corresponds to (0.2)–(0.4).



432 J. CHEEGER GAFA

This entails the µ-a.e. (relative) uniqueness of limit functions, as well as
the finite dimensionality of the space of such functions; see Theorem 4.38.

If the measure, µ, is doubling, then tangent cones, Zz, exist for all z,
but need not be unique. For f Lipschitz, limit functions, f0,z : Zz → R,
exist for any Zz, provided we pass to suitable subsequences, rj → 0. By
passing to subsequences, we can also equip any Zz with a renormalized
limit measure; compare [Fu], [ChCo2].

We show that if the doubling condition and Poincaré inequality hold,
then for µ-a.e. z, all limit functions, f0,z, are themselves generalized linear.
Moreover, the pointwise Lipschitz constant Lip f0,z, of any such limit func-
tion, f0,z, is a constant function, Lip f0,z ≡ Lip f(z); see Theorem 10.2 and
section 1 for the definition of the pointwise Lipschitz constant.

In our general context, the notion of linear function is not defined. To
circumvent this difficulty, we first define a notion of minimal generalized
upper gradient, which plays the role of the norm of the gradient (or dif-
ferential); see the end of this introduction and section 2 for the definition.
Then, we define generalized linear function to be either the function, ` ≡ 0,
or a Lipschitz function, `, with range, (−∞,∞), which is harmonic in the
variational sense (of Dirichlet’s principle) and for which the minimal gen-
eralized upper gradient, g`, satisfies g` ≡ c, for some constant c.

Given a Lipschitz function, f , the pointwise Lipschitz constant, Lip f ,
is always an upper gradient, and hence, a generalized upper gradient of f .

For Lipschitz functions on Euclidean space, the minimal generalized
upper gradient, gf of f , is indeed Lip f . Moreover, as explained at greater
length below, a generalized linear function on Euclidean space is a linear
function in the usual sense.

In the presence of the doubling condition and the Poincaré inequality,
we show initially that the pointwise Lipschitz constant, Lip f , is bounded
above µ-a.e. by a definite multiple of the minimal upper gradient. In Theo-
rem 5.1, we show that if in addition, Z is a length space, then gf (z) =
Lip f(z), for µ-a.e. z. Finally, in Theorem 6.1, we remove the length
space assumption. As a consequence of Theorem 6.1, for µ-a.e. z, we have
Lip f(z) = limr→0 supz,z=r |f(z) − f(z)|/r; compare Proposition 1.11 and
see Corollary 6.36. In particular, the limit on the right-hand side exists.

The role of the (intermediate) assumption that Z is a length space can
be explained as follows: If Z is a length space (no measure specified) and
g is a continuous upper gradient for f , then Lip f ≤ g. Indeed, given z
and ε > 0, there exists δ > 0, such that r < δ implies gf < gf (z) + ε,
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on Br(z). If z, z < δ, then by integrating the function, gf , along a minimal
geodesic (parameterized by arclength) from z to z, we get |f(z) − f(z)| <
(gf (z) + ε)z, z; see Definition 1.1. This gives our assertion.

In the length space case, the essential point is to deal with the possiblity
that g might not be continuous and need only be a generalized upper gra-
dient. For this we use a (nontrivial) approximation argument. Removing
the length space assumption involves a similar approximation argument.
In both instances, Mazur’s lemma plays an essential role; see the discussion
of the reflexivity of H1,p below.

Given the doubling condition on µ, it follows that a function, f , satisfies
a reverse Poincaré inequality on sufficiently small balls centered at a point z,
at which f is asymptotically generalized linear and for which gf (z) > 0; see
Theorem 3.14.

A related argument shows that on any domain, a generalized linear
function can be recovered by a canonical procedure from its boundary val-
ues; see Theorem 8.5. This implies in particular, that every point lies on
a geodesic line, γ, with γ(0) = z, such that `(γ(s)) = Lip ` · s, where
s denotes arclength and, since ` is generalized linear, Lip ` is a constant
function. Here (as usual) a line is a doubly infinite geodesic, each finite
segment of which is minimal. Thus, γ would be an integral curve of, ∇`,
the gradient of `, if ∇` were actually defined.

Similarly, we find that `(z) − Lip ` · bγ ≤ ` ≤ `(z) + Lip ` · b−γ , where
bγ , b−γ , denote the Busemann functions associated with γ,−γ, respectively.
From this it follows that on Euclidean space, generalized linear functions
are precisely those which are linear in the usual sense. (More generally,
for riemannian manifolds with RicMn ≥ 0, they are coordinate functions
corresponding to lines which split off as isometric factors; compare [ChGr].)
We point out that the above mentioned argument does not require our
assuming a priori, that generalized linear functions on Euclidean space are
differentiable, e.g. because they are Lipschitz.

It follows from the reverse Poincaré inequality, the doubling condition
on µ and the Poincaré inequality, that there is a definite upper bound for
the dimension of any space of functions, which are almost generalized lin-
ear. This, together with the fact that Lip f is bounded µ-a.e. by a definite
multiple of gf , enables to show that that there exists a finite dimensional
cotangent bundle, T ∗Z, certain sections of which are the (suitably defined)
differentials, df , of Lipschitz functions f ; compare [W]. Typically, the tran-
sition functions of our cotangent bundle are only L∞ and not continuous.
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If the measure, µ, is Ahlfors regular, then µ-a.e., the Hausdorff dimension
of Z is greater than or equal to the dimension of T ∗Z. Conjecturally, in
the case of equality, the space, Z, is µ-rectifiable; see Conjectures 4.63, 4.65
and compare the results of sections 12–14.

For a (suitable) Lipschitz map between two spaces satisfying our as-
sumptions, there is an induced map on cotangent bundles. Under cer-
tain additional assumptions, the same holds for quasiconformal homeomor-
phisms.

One can define a norm on the sections of T ∗Z such that |df |Lp = |gf |Lp =
|Lip f |Lp , for Lipschitz functions f . Typically, this norm does not arise from
an inner product. This Finslerian (as opposed to riemannian) character of
our spaces is, of course, inevitable, since for example, any finite dimen-
sional normed linear space, equipped with Lebesgue measure, satisfies our
assumptions.

The existence of the finite dimensional generalized cotangent bundle
(and the concommitant uniqueness of strong derivatives) has strong con-
sequences. In particular, it implies that suitably defined Sobolev spaces,
H1,p, are reflexive; see section 2 for the definition of H1,p. This fact, which
enables us to implement Mazur’s lemma, plays an important role in proofs
of Theorems 5.1, 6.1, 13.4; see also Theorem 4.53. As another consequence,
it follows that the theory developed in [HeKM] for measures on Euclidean
space which are given by what they call p-admissible weights, is applicable
in our situation. (While this has been checked at considerable length, we
do not give any details here.)

We show in section 9, that measured Gromov Hausdorff limits of se-
quences of spaces which satisfy a uniform doubling condition and Poincaré
inequality, also satisfy these conditions with the same constants. In partic-
ular, this holds for tangent cones. It follows that the dimension of the space
of generalized linear functions on any iterated tangent cone has an a priori
upper bound, N . Thus, for any integer, m, it follows that any sequence
of iterated tangent cones, C1, C2, . . . , C(m−1)N+m, contains an iterated tan-
gent cone, Cj , such that the maximal dimension of a space of generalized
linear functions on Cj is equal to the maximal dimension of such a space
on any tangent cone at a point of Cj+m. This property of Cj is shared by
Minkowski spaces, i.e. finite dimensional normed linear spaces. In this way,
our discussion yields restrictions on the infinitesimal geometric structure
our space, Z, at µ-a.e. z ∈ Z.

In section 12, we give sufficent condition for a norm on T ∗Z to be given
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by the pointwise Lipschitz constant of some length space metric.
We call the space, (T ∗Zz)∗, the tangent space at z, and denote this space

by TZz. In section 13, using the results of section 12, we show that for µ-
a.e. z ∈ Z and any tangent cone, Zz, there exists an essentially canonical
surjective Lipschitz map, e : Zz → TZz. It follows that the Hausdorff
dimension of any such tangent cone, Zz, is no smaller than the dimension
of TZz.

The result of section 13 plays a role in the context of the bi-Lipschitz
nonimbedding theorem of section 14. There, it is shown in particular, that
if such an imbedding exists, then for µ-a.e. z ∈ Z, the map, e : Zz → TZz,
is a bi-Lipschitz equivalence.

Sections 15, 16 are concerned with a class of length spaces which satisfy
what we call (ε, δ)-inequalities, for all ε, δ. We show in section 15 that
for such spaces it follows — much more easily than in section 5 and in
quantitative form — that Lip f is the minimal generalized upper gradient
of f .

Important examples of spaces which satisfy an (ε, δ)-inequality for all
ε, δ, are those which we call thickly minimally connected. Thickly minimally
connected length spaces are also easily seen to satisfy the doubling condi-
tion, (0.1). All of examples to which we alluded earlier are actually thickly
minimally connected. Moreover, from the directionally restricted relative
volume comparison property, one also sees that smooth manifolds satisfy-
ing RicMn ≥ −(n − 1), including of course, Rn, are (uniformly) thickly
minimally connected.

The results of section 15 are used in section 16. In particular, we give
a quantitative analog of Theorem 8.5, which concerns the canonical repre-
sentation of a generalized linear function in terms of its boundary values;
see 16.32. The results of section 16 have significant applications in the
context of [ChCoMi] and [ChCo3].

We close this introduction by briefly describing the proof of the partial
generalization of Rademacher’s theorem which requires only that the Vitali
covering theorem hold for the measure, µ. As indicated earlier, absent the
existence of sufficiently many rectifiable curves, the function, gf , defined
below might vanish identically for functions, f , which are not locally con-
stant.

Let U⊂Z be open and f : U→R. For p≥1, put |f |1,p= infgi |f |Lp+|gi|Lp ,
where the infimum is taken over all sequences, fi

Lp−→ f , and all upper gradi-
ents, gi, of fi. This definition makes Rellich’s theorem a virtual tautology:
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If fi
Lp−→ f , then lim inf |fi|1,p ≥ |f |1,p. One also easily checks that the

(1, p)-norm is nonincreasing under truncation, i.e. |min(f, c)|1,p ≤ |f |1,p,
for any constant, c.

For 1 < p < ∞, it follows from the uniform convexity of Lp, that
there exists a minimal generalized upper gradient, gf : U → [0,∞], unique
up to modification on certain subsets of measure zero, such that |f |1,p =
|f |Lp + |gf |Lp . Moreover, one verifies that for all A ⊂ U , if f1 |A = f2 |A,
then gf1(z) = gf2(z), for µ-a.e. z ∈ A.

Now suppose that the Vitali covering theorem holds. If for f Lipschitz,
we assume that fr,z does not satisfy the condition of harmonicity, asymp-
totically as r→ 0, for µ-a.e. z, then, by means of a replacement argument,
together the fact that the (1, p)-norm does not increase under truncation,
Rellich’s theorem can easily be contradicted. Since at Lebesgue points of
gf , this function approaches a limit in the sense of Lebesgue’s theorem, we
conclude that the functions, fr,z, are asymptotically generalized linear, for
µ-a.e. z.

For previous works which are concerned with the extension of methods
of analysis on Euclidean spaces to the context of metric measure spaces,
we refer, for example, to [CoiWe1,2], [GroLaPa], [DSe1,2], [F], [H], [HKo],
[HeKM], [HeKo1,2], [KiM], [Se1–5], [St].

We are grateful to Misha Gromov, Juha Kinnunen, Tomi Laakso, Olli
Martio, Ali Ranjbar-Motlagh, Seppo Rickman and Dennis Sullivan for help-
ful conversations. We are particularly indebted to Juha Heinonen for a
number of highly constructive comments. We are most grateful to Stephen
Semmes for numerous inspiring and extraordinarily informative discussions.

1 Upper Gradients and Lipschitz Functions

Let Z be a metric space. We begin by recalling the concept of upper
gradient introduced in [HeKo2].

Fix a set, A ⊂ Z. Let f be a function on A with values in the extended
real numbers.
Definition 1.1 ([HeKo2]). An upper gradient, g, for f is an extended real
valued Borel function, g : A → [0,∞], such that for all points, z1, z2 ∈ A
and all continuous rectifiable curves, c : [0, `] → A, parameterized by arc-
length, s, with c(0) = z1, c(`) = z2, we have∣∣f(z2)− f(z1)

∣∣ ≤ ∫ `

0
g(c(s))ds . (1.2)
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Note that in Definition 1.1, the left-hand side is interpreted as ∞, if
either f(z1) = ±∞ or f(z2) = ±∞; compare the discussion following (5.8).
If on the other hand, the right-hand side of (1.2) is finite, then it follows
that f(c(s)) is a continuous function of s. In the present paper, we will
only be concerned with the case in which f is a Borel function. Typically,
A will be an open subset (often denoted by U).

Remark 1.3. If, as holds for discrete spaces or “snow flakes”, Z contains
no nonconstant rectifiable curves, then for any f , we can take g ≡ 0. In
such cases, g does not exert any control over the behavior of f .

Remark 1.4. If Z is rectifiably connected, then there is a length space
metric, on Z, canonically associated to the given metric. It is easy to
verify that a curve, c, is rectifiable of length, `, with respect to one of these
metrics, if and only if the same holds for the other. Hence, a function, g,
is an upper gradient for a function, f , with respect to one of these metrics,
if and only if the same holds for the other.

The following two propositions are easily verified.

Proposition 1.5. If g1, g2 are upper gradients for f1, f2, then |α1|g1 +
|α2|g2 is an upper gradient for α1f1 + α2f2. Moreover, max(g1, g2) is an
upper gradient for max(f1, f2) and for min(f1, f2).

Proposition 1.6. Let V1, V2 ⊂ U be open and let gj : Vj → [0,∞] be an
upper gradient for the restriction of f : V1 ∪ V2 :→ R to Vj . Extend gj to
V1 ∪ V2 by setting gj | (V1 ∪ V2) \ Vj ≡ 0. Then the function, max(g1, g2) is
an upper gradient for f .

For completeness, we indicate the elementary proof of the following
basic lemma.

Lemma 1.7. Let g1, g2 be upper gradients for f1, f2 respectively. Then
for all ε > 0, the function, g1(|f2| + ε) + (|f1| + ε)g2, is an upper gradient
for f1f2.

Proof. Let c be a rectifiable curve, c : [0, `] → U . We can assume that the
restrictions of both g1 and g2 to the curve, c, are integrable, and hence, that
the restrictions of f1, f2 to this curve are uniformly continuous. Otherwise,
there is nothing to prove. Fix n > 0 and put `i = (i`)/n, where i =
0, . . . , n− 1. We have∣∣f1(c(`i+1))

∣∣ ∣∣f2(c(`i+1))− f2(c(`i))
∣∣ ≤ ∣∣f1(c(`i+1))

∣∣ ∫ `i+1

`i

g2(c(s))ds ,
(1.8)
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∣∣f1(c(`i+1))− f1(c(`i))
∣∣ ∣∣f2(c(`i))

∣∣ ≤ ∣∣f2(c(`i))
∣∣ ∫ `i+1

`i

g1(c(s))ds .
(1.9)

If we add these equations, sum over i and use the uniform continuity of
f1, f2, the lemma easily follows. �

Define the extended real valued Borel function, Lip f , by

Lip f(z) = lim inf
r→0

sup
z,z=r

|f(z)− f(z)|
r

, (1.10)

where we put Lip f(z) = 0 if z is isolated. For f Lipschitz, the function,
Lip f , is finite and bounded above by the Lipschitz constant, Lip f , of f .

The following proposition, which is a restatement of Lemma 1.20 of
[Se1], provides an important example of an upper gradient, for the case in
which f is Lipschitz.
Proposition 1.11. If f is Lipschitz then Lip f is an upper gradient for f .

Proof. Since the restriction of f to any rectifiable curve, c, is Lipschitz
and in particular, absolutely continuous, it follows that f(c(s)) = fc(s)
is differentiable for almost every s. Moreover, (1.2) holds, with g(c(s))
replaced by |f ′c(s)|. Thus, it suffices to show |f ′c(s)| ≤ Lip f(c(s)), for
those s, for which f ′c(s) exists.

Fix such a value s < `. We can assume that c(s), c(s) 6≡ 0, for s
sufficiently close to s, since otherwise, f ′c(s) = 0. Then, by continuity, for
all sufficiently small r, there exists some smallest s(r), with c(s(r)), c(s) =
r ≤ |s(r)− s|. In addition, s(r)→ 0 as r → 0. We have

|fc(s(r))− fc(s)|
|s(r)− s| ≤ sup

z,c(s)=r

|f(z)− f(c(s))|
r

. (1.12)

Since f ′c(s) exists, we get

|f ′c(s)| = lim inf
r→0

|fc(s(r))− fc(s)|
|s(r)− s|

≤ lim inf
r→0

sup
z,c(s)=r

|f(z)− f(c(s))|
r

(1.13)

= Lip f(c(s)) ,
and our assertion follows. �

We also put

lip f(z) = lim inf
r→0

sup
z,z≤r

|f(z)− f(z)|
r

, (1.14)

and put lip f(z) = 0 for z isolated.
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Definition 1.15. For f Lipschitz, the pointwise Lipschitz constant, Lip f ,
is the Borel function,

Lip f(z) = lim sup
r→0

sup
z,z≤r

|f(z)− f(z)|
r

= lim sup
r→0

sup
z,z=r

|f(z)− f(z)|
r

= lim sup
z,z→0

|f(z)− f(z)|
z, z

, (1.16)

where as above, we put Lip f(z) = 0 if z is isolated.

We have Lip f(z) ≤ lip f(z) ≤ Lip f(z) ≤ Lip f , where in general, the
inequalities could be strict.

As in section 0, for r > 0, z ∈ Z, we put

fr,z =
f − f(z)

r
. (1.17)

The following proposition is trivial to verify.

Proposition 1.18. For all Lipschitz functions, f , the following holds:

i) lim infr→0 supz,z=r |fr,z| = 0, if and only if Lip f(z) = 0.
ii) lim infr→0 supBr(z) |fr,z | = 0, if and only if lip f(z) = 0.
iii) limr→0 supBr(z) |fr,z | = 0, if and only if Lip f(z) = 0.
iv) In particular, the set of all functions, f , such that Lip f(z) = 0, forms

a subspace of the space of all Lipschitz functions.

Remark 1.19. The fibre of the cotangent bundle at a point, x ∈ Rn,
can be canonically identified with quotient of the stalk at x, of the sheaf
of differentiable functions, by the subspace consisting of all functions, with
a representative, f , such that Lip f(x) = 0. However, in this character-
ization, it is not possible to replace differentiable functions by Lipschitz
functions, since although Lipschitz functions are differentiable almost ev-
erywhere, not every Lipschitz function is differentiable at the given point x.
Thus, we cannot use ii) of Proposition 1.18 to define the fibre at z of a gen-
eralized cotangent bundle. None-the-less, we will show in Theorems 3.7,
4.38, that given (0.1) and the Poincaré inequality, this difficulty can be
circumvented by regarding the cotangent bundle as an L∞ vector bundle
(rather than a topological one). Note that an L∞ vector bundle does not
have canonically defined fibres, but only representatives with fibres defined
almost everywhere, such that for any two such representatives, correspond-
ing fibres are canonically identified almost everywhere. Thus, the situation
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is analogous to that which concerns the pointwise values of an element of
an Lp space.

2 Sobolev Spaces and Generalized Upper Gradients

Let Z be a metric space and µ a Borel regular measure on Z. Throughout
the paper, we assume that the measure of balls of finite nonzero radius is
finite and nonzero.

In this section, for all 1 ≤ p < ∞, we define a version the Sobolev
space, H1,p. Sobolev spaces for general metric spaces were introduced in
[H]; compare also [HKo]. The definitions in these references are different
from the one employed here, which is more suited to our present purposes.

In the present section, we also define the notion of generalized upper
gradient, which plays an important role in the sequel. In particular, we
show that at least for the case, 1 < p < ∞, Sobolev functions can be
characterized in terms of this notion.

In [Sh], N. Shanmugalingam defines Sobolev spaces and a corresponding
notion of weak upper gradient. She has verified that for p > 1, her definition,
which employs the concept of the p-modulus of a path family, gives rise to
the same spaces as ours.

Fix an open set, U and until further notice, write Lp for Lp(U).
For f ∈ Lp, we set

|f |1,p = |f |Lp + inf
{gi}

lim inf
i→∞

|gi|Lp , (2.1)

where the inf is taken over all sequences, {gi}, for which there exists a

sequence, fi
Lp−→ f , such that gi is an upper gradient for fi, for all i. Note

that by Proposition 2.20 below, we could as well require that each of the
functions, fi, be bounded. It is trivial to check that set of elements, f ∈ Lp,
on which |f |1,p <∞ is a subspace, for which this expression defines a norm.
We call (|f |1,p − |f |Lp)p the upper gradient p-energy of f .

Definition 2.2. For p ≥ 1, the Sobolev space, H1,p = H1,p(U), is the
subspace of Lp consisting of functions, f , for which |f |1,p < ∞, equipped
with the norm | · |1,p.

Remark 2.3. If Z is rectifiably connected, then the Sobolev space, H1,p,
remains unchanged as a normed linear space, if the given metric on Z is
replaced by the canonically associated length space metric; see Remark 1.4.

Let 0→ H1,p
i−→Lp denote the natural map.
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Remark 2.4. It is clear that the map, i , is a norm nonincreasing injection
such that i(Br(0)) is closed in Lp. Here, Br(0) = {v ∈ H1,p | |v|1,p ≤ r}.

As follows immediately from the definition, the upper gradient p-energy
is lower semicontinuous with respect to convergence in Lp, i.e. Rellich’s
theorem holds for the upper gradient p-energy.
Theorem 2.5. Let {fi} be a bounded sequence in H1,p such that

i(fi)
Lp−→ f . Then f = i(f∞), where f∞ satisfies

lim inf
i
|fi|1,p ≥ |f∞|1,p . (2.6)

Theorem 2.5 allows us to deduce:
Theorem 2.7. The space, H1,p, is complete.

Proof. Let H1,p denote the completion of H1,p. The map, i , extends
uniquely to a norm nonincreasing map, i : H1,p → Lp.

We claim that i is an injection. To see this, let {uj} be a Cauchy

sequence in H1,p such that i(uj)
Lp−→ 0. It suffices to show that uj

H1,p−−−→ 0.
Assume the contrary. It follows that limj→∞ |uj |1,p = c > 0. Fix j so

large that we have |uj−uk|1,p < c/2, for all k ≥ j. Thus, lim supk |uj−uk|1,p
≤ c/2. Letting k →∞, we get i(uj −uk)

Lp−→ i(uj). Since limj→∞ |uj |1,p =
c > 0, lim supk |uj − uk|1,p ≤ c/2, we contradict Theorem 2.5.

Now let {f`} be a sequence in H1,p, such that f`
H1,p−−−→ f∞. Since in

particular, {f`} is bounded inH1,p, it follows from Remark 2.4 that i(f∞) =
i(f∞), for some f∞ ∈ H1,p. Since i extends i , we also have i(f∞) = i(f∞).
But i is an injection, so f∞ = f∞. This suffices to complete the proof. �

Definition 2.8. The function, g ∈ Lp is a generalized upper gradient for

f ∈ Lp, if there exist sequences, fi
Lp−→ f, gi

Lp−→ g, such that gi is an upper
gradient for fi, for all i.

Clearly, for any g as above, we have |f |1,p ≤ |f |Lp + |g|Lp . Moreover, the
set of generalized upper gradients is a closed convex subset of Lp. A priori,
for a given f ∈ H1,p, this subset could be empty; see however Theorem 2.10
below, for the case 1 < p <∞.
Definition 2.9. For fixed p, a minimal generalized upper gradient for f
is a generalized upper gradient gf , such that |f |1,p = |f |Lp + |gf |Lp .
Theorem 2.10. For all 1 < p < ∞ and f ∈ H1,p there exists a mini-
mal generalized upper gradient, gf , which is unique up to modification on
subsets of measure zero.
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Proof. We can choose a suitable diagonal sequence, fi
Lp−→ f , and for all i,

an upper gradient, gi for fi, such that |f |1,p = |f |Lp + limi→∞ |gi|Lp . From
the uniform convexity of Lp, for 1 < p < ∞, it follows that there exists g

such that gi
Lp−→ g. Clearly, g = gf is an upper gradient for f . Again by

uniform convexity, it follows that g is independent of the particular choice
of sequences, {fi}, {gi}. �

Definition 2.11. Let 1 ≤ p ≤ ∞. A sequence, fi
LP−−→ f , converges to

f ∈ H1,p in the relaxed topology of H1,p, if
lim
i→∞
|fi|1,p = |f |1,p , (2.12)

By using Theorem 2.5 and the uniform convexity of Lp, for 1 < p <∞,
we get:

Proposition 2.13. Let 1 < p <∞ and let fi
Lp−→ f . Then the following

conditions are equivalent:
i) fi converges to f in the relaxed topology of H1,p.

ii) gfi
Lp−→ gf .

iii) There exist generalized upper gradients, gi for fi, such that
|fi|Lp+|gi|Lp → |f |1,p.

iv) There exist generalized upper gradients, gi for fi, such that gi
Lp−→ gf .

Remark 2.14. Let ρ1, ρ2 be metrics on Z with ρ1 ≤ ρ2. Then it is easy
to see that gρ2

f ≤ gρ1
f , where gρ1

f , g
ρ2
f , denote the minimal upper gradients

with respect to ρ1, ρ2, respectively.

Remark 2.15. If for example Z = Rn, then the (mutually equivalent)

conditions in Proposition 2.13 imply fi
H1,p−−−→ f . More generally, this follows

in those cases in which the norm on H1,p is uniformly convex; compare
Theorem 4.48 and the discussion which follows.

Remark 2.16. Let p = 1. As in the case, 1 < p < ∞, we can choose

a sequence, fi
Lp−→ f , and for all i, an upper gradient, gi for fi, such that

|f |1,p = |f |Lp +limi→∞ |gi|Lp . From the compactness of the space of Radon
measures, it follows that there exists a Radon measure, gf , such that {gi}
as in (2.12) converges to gf in the sense of Radon measures. However, such
a gf might not be unique and, as a consequence of oscillations, the mass of
gf could be smaller than |f |1,1 − |f |L1 . The proper context for discussing
these issues is that of functions of bounded variation, but we will not pursue
that discussion here.
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Note that if W ⊂ U is open, then g |W is a generalized upper gradient
for f |W .
Proposition 2.17. Let f : U → R and let gU be a generalized upper
gradient for f on U . Let W ⊂ U be open and let gW be a generalized upper
gradient for f |W . Then there exists a generalized upper gradient, g

U
, for

f on U , such that g
U

(z) = gW (z), for µ-a.e. z ∈W , and g
U

(z) = gU (z), for
µ-a.e. z ∈ (U \W ).

Proof. Since W is a countable union of bounded open sets, it clearly suf-

fices to assume that W itself is bounded. Let fU,i
Lp−→ f, gU,i

Lp−→ gU , be

sequences as in Definition 2.8. Let fW,i
Lp−→ f, gW,i

Lp−→ gW , be the corre-
sponding sequences for f |W . Fix η > 0 and let Wη ⊂W denote the set of
points at distance ≥ η from ∂W . Let φ : U → [0, 1] be a Lipschitz function
with suppφ ⊂W , such that φ |Wη ≡ 1.

Define fi : U → R by fi = φfW,i + (1 − φ)fU,i. Then fi
Lp−→ f . Since

on W , we have fi = (1− φ)(fU,i − fW,i) + fW,i, it follows from Lemma 1.7
that for all ε > 0, an upper gradient for fi |W is provided by the function,
Lip (1−φ) (|fU,i−fW,i|+ε)+((1−φ)+ε)(gU,i+gW,i)+gW,i. On U \suppφ,
the function, gUi , is an upper gradient for fi |U \ suppφ. Extend each
of these functions to all of U by setting them equal to 0 on the U \W ,
respectively, suppφ. By Proposition 1.6 the maximum of the extended
functions is an upper gradient for fi on U . Let i → ∞, then ε → 0, and
finally, η → 0. Since, W is bounded and µ is a Borel regular measure for
which the measure of bounded sets is finite, our claim easily follows. �

Theorem 2.18. If g is any generalized upper gradient for f , then
gf ≤ g (µ-a.e.) . (2.19)

Proof. Assume that there exists a bounded set, A, with µ(A) > 0, such that
g(z) < gf (z) − ε, for all z ∈ A. Choose a sequence of open sets, Wi ⊃ A,
such that µ(Wi \ A) → 0. By applying Proposition 2.17 on each set, Wi

and letting i → ∞, we contradict the assumption that gf is a minimal
generalized upper gradient. �

Proposition 2.20 (Truncation). If U is bounded then for all c ≤ ∞, we
have ∣∣min(f, c)

∣∣
1,p −

∣∣min(f, c)
∣∣
Lp
≤ |f |1,p − |f |Lp . (2.21)

Proof. This is a direct consequence of the corresponding fact for upper
gradients which is trivially verified. �
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Proposition 2.22. If g is a generalized upper gradient for f and A =
f−1(c), for some constant c, then there exists a generalized upper gradient,
g, for f such that g = g, µ-a.e. on U \A and g = 0, µ-a.e. on A.

Proof. We can write U as a union of bounded open sets. Since the set
of generalized upper gradients of f is a closed subset of Lp, it suffices to

assume that U is bounded. Let fi
Lp−→ f, gi

Lp−→ g, be sequences as in
Definition 2.8. For all ε > 0, define

fi,ε(z) =


fi(z) + ε if fi(z) ≤ c− ε ,
c if c− ε ≤ fi(z) ≤ c+ ε ,

fi(z)− ε if c+ ε ≤ fi(z) .
(2.23)

Then limε→0 limi→∞ fi,ε = f , in Lp.
Since, µ is Borel regular, there exists a sequence, {Ci,j}, closed subsets

of f−1
i,ε (c), such that limj→∞ µ(Ci,j) = µ(f−1

i,ε (c)). Let gi,ε,Ci,j denote the
function such that gi,ε,Ci,j = gi on U \ Ci,j and gi,ε,Ci,j = 0 on Ci,j . It is
straightforward to check that gi,ε,Ci,j is an upper gradient for fi,ε.

For fixed ε > 0, we have limi→∞ µ(A \ f−1
i,ε (c)) = 0. Let j → ∞, then

i → ∞ and finally, ε → 0. By taking a suitable diagonal sequence, the
proof is easily completed. �

Corollary 2.24. For 1 < p < ∞, the subspace of H1,p consisting of
those functions which are essentially bounded is dense in H1,p.

Corollary 2.25. Let 1 < p <∞. If f1, f2 ∈ H1,p and f1 |A = f2 |A, for
some Borel set, A ⊂ U , then gf1(z) = gf2(z), for µ-a.e. z ∈ A.

Proof. Since, f1 = (f1 − f2) + f2, we get gf1 ≤ g(f1−f2) + gf2 , which,
by Proposition 2.22, gives gf1(z) ≤ gf2(z), for µ-a.e. z ∈ A. The reverse
inequality follows similarly. �

Corollary 2.26. If f1, f2 ∈ H1,p then either gmin(f1,f2)(z) = gf1(z), or
gmin(f1,f2)(z) = gf2(z), for µ-a.e. z.

Proof. By Proposition 1.5, we have min(f1, f2) ∈ H1,p. Thus, our assertion
follows from Corollary 2.25. �

Remark 2.27. Proposition 2.17 enables us to extend the definition of
minimal generalized upper gradients to functions which are only locally
in H1,p. Note also that when the definition is so extended, the pointwise
µ-a.e. minimizing property of minimal generalized upper gradients implies
that gf remains unchanged if the measure, µ is replaced by a measure µ′,
provided µ, µ′ are mutually absolutely continuous and Lp(Z,µ) = Lp(Z,µ′).
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Remark 2.28. If the set of generalized upper gradients for f ∈ H1,1
is nonempty, then by a replacement argument based on Proposition 2.17
(similar to the one given in the proof of Theorem 2.18) it follows that
there exists a unique smallest generalized upper gradient, g

f
, such that

for all generalized upper gradients, g, we have g
f
(z) ≤ g(z), for µ-a.e.

z ∈ Z. However, even in this case, this argument does not show that
|f |1,1 = |f |L1 + |g

f
|L1 , i.e. that g

f
is a minimal generalized upper gradient.

Remark 2.29. So far we have not addressed the issue of the possible
dependence of gf on the choice of p. For example, U bounded and f ∈ H1,p,
implies f ∈ H1,p′ , for 1 < p′ < p. If we write gf,p to indicate the dependence
on p, then clearly, gf,p′ ≤ gf,p. Note that although the generalized upper

gradient, gf,p′ , is in Lp, it is not clear that there exists, fi
L′p−→ f, gi

Lp−→ gf,p′ .
If this holds, then a truncation argument implies gf,p = gf,p′ . At least in
the case in which Z the measure is doubling and a Poincaré inequality of
type (1, p′) holds, we do have gf,p = gf,p′ ; see Corollary 6.38.

Let U be open and let Uη be as in Proposition 2.17. Let K(U) denote
the subset of H1,p(U) consisting of those functions, k, for which there exists
η > 0, such that i(k), the image of k, in Lp, has (a representative) with
support in Uη.

Definition 2.30. The Sobolev space,
◦
H1,p (U) ⊂ H1,p(U), is the closure

in H1,p(U) of the space K(U).

Remark 2.31. Note that if k ∈ K(W ) and W ⊂ U , then by putting
k |U \W ≡ 0, we can regard k ∈ K(U). We denote the extended function by
k as well. By an argument similar to that given in the proof of Lemma 2.17,
we can also regard k ∈

◦
H1,p (W ) as an element of

◦
H1,p (U). We also denote

the extended function by k.

3 The Vitali Covering Theorem and Asymptotic
Generalized Linearity

In this section we give a partial generalization of Rademacher’s theorem on
the almost everywhere differentiability of Lipschitz functions on Euclidean
spaces, under the assumptions that the pair (Z,µ) satisfies the Vitali cov-
ering theorem. We recall that this is implied by (0.1); see Chapter 2 of
[Ma] and the references therein for additional examples. We also observe
that absent any assumptions on (Z,µ), functions which almost satisfy the
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conditions of approximate generalized linearity, satisfy a reverse Poincaré
inequality as well. However, for the application to asymptotically general-
ized linear functions, it is neccessary to assume (0.1).

Throughout this section, we fix some p with 1 < p < ∞. However,
since our assertions are to the effect that something holds µ-a.e., it follows
immediately that these assertions actually hold µ-a.e., for all values of p
lying in a prescribed countable subset of (1,∞). It will turn out that
under the assumption that a Poincaré inequality of type (1, p) holds, our
assertions will hold µ-a.e., for all values p′ ∈ [p,∞); see Remark 2.29 and
Corollary 6.38.

Fix z ∈ Z, r > 0, and let Br(z) denote the closed ball of radius r and

center z. Let kr denote a function in
◦
H1,p (Br(z)).

Definition 3.1. Let 1 < p < ∞. The function, f , is asymptotically
p-harmonic at z ∈ Z, if

lim
r→0

(
−
∫
Br(z)

(gf )p dµ− inf
kr

−
∫
Br(z)

(gf+kr)
p dµ

)
= 0 . (3.2)

Note that in Definition 3.1, we could as well have used functions,
kr ∈ K(Br(z)).

It is clear that the property of being asymptotically harmonic at z is
independent of the particular choice of minimal generalized upper gradient
(and could actually be reformulated to include the case p = 1, where we can
not be certain that such exist). In order to avoid such dependence in our
next definition, it is convenient to make the following convention whenever
the Vitali covering theorem holds.

Convention. If the Vitali covering theorem holds, then (gf )p will always
denote the precise representative of (ĝf )p, where ĝf is any minimal gener-
alized upper gradient; see p. 46 of [EG]. In particular, the function, gf , is
independent of the choice of ĝf and vanishes at all points which are not
Lebesgue points of (gf )p.

With the above convention, we have gaf = |a|gf , for all a ∈ R. More-
over, if z is a Lebesgue point of (gpf1

) and (gf2)p, then

gf1+f2(z) ≤ gf1(z) + gf2(z) . (3.3)
Finally, if g is a generalized upper gradient of f and z is a Lebesgue point
of of (g)p and of (gf )p, then

gf (z) ≤ g(z) . (3.4)
Definition 3.5. The function, f , is asymptotically generalized linear with
respect to gf at z ∈ Z if f is asymptotically p-harmonic at z, and the point,
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z, is a Lebesgue point of (gf )p.

Remark 3.6. Note that gf is also the minimal generalized upper gradient
for the function, fr,z, with respect to the rescaled metric, r−1ρ, where ρ
is the metric (i.e. distance) on Z. If we consider the family of functions
obtained by restricting each function, fr,z, to the ball, Br(z), equipped
with the rescaled metric r−1ρ, then the condition of asymptotic generalized
linearity has an obvious reformulation in terms of the behavior as r → 0,
of this family of functions.

Theorem 3.7 (Asymptotic generalized linearity; Rademacher 1). If (Z,µ)
satisfies, the Vitali covering theorem (in particular, if µ satisfies the dou-
bling condition, (0.1)) and f : Z → R is Lipschitz, then f is asymptotically
generalized linear, for µ-a.e. z ∈ Z.

Proof. Assume that there exists A ⊂ Z, of positive measure, such that for
some ε > 0 and all z ∈ A, there is a positive sequence, rj(z)→ 0, such that
z is a Lebesgue point of (gf )p and for some function, krj(z) ∈ K(Brj (z)),

−
∫
Brj(z)(z)

(gf )p dµ ≥ ε+−
∫
Brj(z)(z)

(gf+krj )
p dµ . (3.8)

We can assume without loss of generality that the function, f + krj(z),
satisfies, max f + krj(z) ≤ maxBrj(z)(z) f, min f + krj(z) ≥ minBrj(z)(z)

f ; see

Proposition 2.20. Thus, on Brj(z)(z), we have |f−(f+krj(z))|L∞ ≤ 2Lrj(z),
where L is the Lipschitz constant of f .

Since µ satisfies the Vitali covering theorem, for every positive integer, i,
we can find a covering of almost all of A, by a collection, {Bri,k(zk)}, of mu-
tually disjoint closed balls, such that for all k, we have zk ∈ A, ri,k < i−1,
and ri,k = rj(zk), for some j. Let fi ∈ H1,p(U) be the function whose
restriction to each Bri,k(zk) coincides with f + kri,k and which is equal

to f elsewhere. Clearly, fi
L∞−−→ f and by construction, together with

Corollary 2.25, lim infi |fi|p1,p ≤ |f |
p
1,p−εµ(A). This contradicts Theorem 2.5

(Rellich’s Theorem.) Hence, µ(A) = 0, which completes the proof. �

Remark 3.9. Note that for the proof of Theorem 3.7 to go through, it
would suffice to assume that f ∈ H1,p and in addition, that f is continuous.

We now show that if f is asymptotically generalized linear at z, then f ,
satisfies a reverse Poincaré inequality on sufficiently small balls Br(z).

For U open, let Uη be as in Lemma 1.7.
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Lemma 3.10 (Reverse Poincaré inequality). Fix 0 ≤ δ < ψ ≤ 1. Let
f ∈ H1,p(U) satisfy(∫

U\U2η

(gf )p dµ
)1/p

≤ δ
(∫

U
(gf )p dµ

)1/p

, (3.11)

and assume that for all k ∈ K(U),

ψ

(∫
U

(gf )p dµ
)1/p

≤
(∫

U
(gf+k)p dµ

)1/p

. (3.12)

Then (∫
U

(gf )p dµ
)1/p

≤ 1
η(ψ − δ)

(∫
Uη\U2η

|f |p dµ
)1/p

. (3.13)

Proof. For all η > 0, there exists a Lipschitz function, φ : U → [0, 1], such
that φ |U2η ≡ 1, suppφ ⊂ Uη, |Lip (1 − φ)|L∞ ≤ η−1. By Lemma 1.7, for
all ε > 0, the function, Lip (1− φ) (|f |+ ε) + (1− φ+ ε)gf , is a generalized
upper gradient for the function (1−φ)f . By letting ε→ 0 and using (3.11),
(3.12), the proof is easily completed. �

Although (0.1) was not required in Lemma 3.10, we do make this as-
sumption in Theorem 3.14 below.
Theorem 3.14. Let (Z,µ) satisfy (0.1). Let f ∈ H1,p be asymptotically
generalized linear at z. If gf (z) > 0, then for all r > 0 sufficiently small,

r

(∫
Br(z)

(gf )p dµ
)1/p

≤ 2
2κ+4
p

( ∫
B 2

3 r
(z)\B 1

3 r
(z)
|f |p dµ

)1/p

. (3.15)

In particular, lip f(z) > 0.

Proof. This follows from Lemma 3.10 by taking, U = Br(z), η = 1
3r,

δ = 1− 2−2κ/p, ψ = 1− 2−(2κ+2p)/p and using (0.1). �

In concert with with Theorem 4.8, Theorem 3.14 plays an important
role in the proof of the uniqueness statement for our generalization of
Rademacher’s theorem, and in our discussion of the generalized cotangent
bundle, T ∗Z, as well; see Theorem 4.38.

4 The Poincaré Inequality and Differentials of Lipschitz
Functions

The classical Rademacher theorem for Lipschitz functions on Euclidean
space asserts that at almost all points, not only are such functions asymp-
totically (in fact, infinitesimally) linear, but in addition, the asymptotic
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linear approximation is the same on all scales. In this section, given the
doubling condition and Poincaré inequality, we prove a statement which
when specialized to the Euclidean case, implies this uniqueness; see The-
orem 4.38. As a consequence, we show that such a space has a finite
dimensional L∞ vector bundle, the generalized cotangent bundle, of which
the differentials of Lipschitz functions are sections. We also consider the
induced maps on cotangent bundles for (suitable) Lipschitz maps between
spaces satisfying our assumptions and, under suitable additional assump-
tions, for quasiconformal homeomorphisms.

The existence of the finite dimensional generalized cotangent bundle
has strong implications. For example, the arguments and conclusions of
[HeKM], developed there in the context of p-admissible weights, apply in
our situation as well.

In the present section (apart from Conjecture 4.65) we consider nei-
ther measured Gromov-Hausdorff convergence, nor tangent cones, nor in
particular, limit functions, f0,z, on tangent cones. These are discussed in
sections 9–14.

Throughout this section, we assume (0.1).
For f ∈ L1, set

1
µ(W )

∫
W
f dµ = −

∫
W
f dµ (4.1)

and

fz,r = −
∫
Br(z)

f dµ . (4.2)

The quantity, fz,r, should not be confused with the functions, fr,z, which
appear in section 0; see also (1.17).

We say that Z satisfies a weak Poincaré inequality of type (1, p), if for
all r′ > 0, there exists 1 ≤ Λ <∞ and C = C(p, r′), such that for all r ≤ r′,
and all upper gradients, g, for f ,(

|f − fz,r|
)
z,r
≤ Cr

(
(gp)z,Λr

)1/p
. (4.3)

By Hölder’s inequality, if (4.3) holds for some p, it holds for all p′, with
p ≤ p′ < ∞. Also, according to [HeKo3], if Z is proper (i.e. closed balls
of finite radius are compact) and quasi-convex, then (4.3) holds (for all
measurable functions f) if and only if it holds for all Lipschitz functions f .

If (0.1) holds and in addition, balls in Z satisfy a chain condition with
constant 0 < M < ∞, then by [J], [HKo], (4.3) implies the Poincaré-
Sobolev inequality,(

(|f − fz,r|χp)z,r
)1/χp ≤ τr((gp)z,r)1/p , (4.4)
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where χ = χ(κ,C) > 1, τ = τ(κ,C,M,Λ). In particular, there exists M
such that if Z is a length space, then Z satisfies a chain condition with
constant M . According to [DSe2], for Z complete, (0.1), (4.3) imply that
Z is λ(κ,C)-quasi-convex, and hence, λ(κ,C)-quasi-isometric to a length
space metric; see also section 17 and [Se5]. Hence, it follows that (0.1),
(4.3) imply (4.4), with constant τ = τ(κ,C,Λ).

It is also observed in [HKo], that if for some ψ > 0, there exists z′,
such that z′, z ≥ (1 + ψ)r, then (0.1), (4.3) imply the following Sobolev

inequality, for all f ∈
◦
H1,p (Br(z)).(

−
∫
Br(z)

|f(z)|χp dµ
)1/χp

≤ c(κ, p, ψ)τ1/pr

(
−
∫
Br(z)

(g)p dµ
)1/p

; (4.5)

compare [LiS]. Since in the proof, one applies (4.22) (with z of (4.22)
replaced by a suitable point, z′′ ∈ (B(1+ψ)r(z)\Br(z))) the chain condition
does not enter this discussion.
Remark 4.6. It is an immediate consequence of the definitions that the
validity of any of (4.3)–(4.5) for all f and all upper gradients, g, implies
the validity of the corresponding inequalities for all f and all generalized
upper gradients g. This remark will be used from now on without further
mention.

Let Uη ⊂ U be as in Lemma 3.10. Let i∗ denote the restriction map
from functions on U to functions on Uη. If U ⊂ Bd(z), it follows from (0.1)
that for all 0 < s ≤ η, there exists N1 = N1(κ, d, s), N2 = N2(κ,Λ) and
coverings, Uη ⊂ ∪N1

i=1Bs(zi) ⊂ ∪
N1
i=1BΛs(zi) ⊂ U , such that the covering,

{BΛs(zi)}, has multiplicity ≤ N2. Given such coverings and f ∈ Lp(U), we
put

φ(f) =
(
(µ(Bs(z1)))1/pfz1,s, · · · , (µ(Bs(zN1)))1/pfzN1 ,s

)
, (4.7)

and equip Rn with the norm, |(a1, . . . , an)|pp = |a1|p + · · ·+ |an|p.
Theorem 4.8. Let (Z,µ) satisfy (0.1) and (4.3). If

ηp
∫
U
gpf dµ ≤ K

p

∫
Uη

|f |p dµ (4.9)

and
0 < s ≤ λη , (4.10)

where λ = min(1, (4τKN1/p
2 )−1), then∫

Uη

|f |p dµ ≤ 2p+1
N1∑
i=1

|fzi,s|pµ(Bs(zi))

= 2p+1|φ(f)|pp .
(4.11)
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In particular, if V is a space of continuous functions such that (4.9) holds
for all f in V, then dim(V) ≤ N1. Moreover, if gf ≡ 0 implies f ≡ c, for
some constant, c, then dim(V) ≤ N1.

Proof. We have∫
Uη

|f |pdµ ≤
∑
i

∫
Bs(zi)

|f |pdµ

≤ 2p
∑
i

∫
Bs(zi)

|f−fzi,s|pdµ+2p
∑
i

∫
Bs(zi)

|fzi,s|pdµ , (4.12)

and by (4.4), (4.9),∑
i

∫
Bs(zi)

|f − fzi,s|pdµ ≤ N2τ
psp
∫
U
gpfdµ

≤ τpλpKpN2

∫
Uη

|f |pdµ . (4.13)

For 0 < λ ≤ min(1, (4τKN1/p
2 )−1), from (4.12), (4.13) and (0.1), we

obtain (4.11). �
In addition to the above result (compare [CoMi1]) we will need a result

of standard type concerning the pointwise behavior of Sobolev functions off
subsets of small measure.
Theorem 4.14. Let (Z,µ), satisfy (0.1), (4.3). Let f : Bd(z) → R, and
let g be a generalized upper gradient for f . Then for all K > 0, there exists
a collection of balls, {B6ri(zi)}, satisfying, Bri(zi) ⊂ Bd(z),∑

i

(
ri
4d

)κ ≤ 1
K , (4.15)

and ∑
i

µ(B6ri(zi))
µ(Bd(z))

≤ 8
K
, (4.16)

such that if z ∈ Bd(z) \ ∪iB6ri(zi), and r ≤ z, ∂Bd(z), then
((gp)z,r)1/p < K1/p ((gp)z,d)1/p , (4.17)

and for all j > 1,
|fz,2−jr| ≤

(4d
r

)κ
(|f |)z,d + rK1/p2κ+1τ((gp)z,d)1/p . (4.18)

Moreover, if z1, z2 ∈ Bd(z) \ ∪iB6ri(zi), and z1, ∂Bd(z) ≥ 4Λz1, z2, then∣∣f(z1)− f(z2)
∣∣ ≤ K1/p 22κ+2τ((gp)z,d)1/pz1, z2 . (4.19)

Remark 4.20. The crucial role in the proof of Theorem 4.14 is played by
the following estimate, which is an easy consequence of the weak Poincaré
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inequality (4.3).

|fz, 12 r − fz,r| ≤ −
∫
B 1

2 r
(z)
|f − fz,r| dµ

≤ 2κ
(
|f − fz,r|

)
z,r

≤ 2κτr((gp)z,Λr)1/p . (4.21)
In the proof of Theorem 4.14, the inequality, (4.21), is applied to the balls,
B2−jt(z), where 1 ≤ j < ∞, and z = z1 or z = z2; see [EG] or [KiM] for
details.

If z is a Lebesgue point of f , we get the “telescope estimate” for |fz,r|,
|fz,r| ≤ |f(z)|+ 2κ+1τrMpg , (4.22)

where Mph denotes the maximal function,

Mph(z) = sup
r

((|h|p)z,r)1/p . (4.23)

This estimate plays a key role in section 5; see Lemma 5.27. In the con-
text of Theorem 4.14, it seems more suggestive to speak of “microscope”
estimates; see, e.g. (4.19).

From Theorem 4.14 and a standard argument, we get the following
result; for a significantly stronger result, see Theorem 5.3.
Theorem 4.24. If (Z,µ) satisfy (0.1), and (4.3) for some for 1 ≤ p <∞,
then the subspace of locally Lipschitz functions is dense in H1,p. If p = 1,
such functions are dense in H1,1, with respect to the relaxed topology
of H1,1. Moreover, the subspace of K consisting of those functions which

are of locally Lipschitz is dense in
◦
H1,p, provided 1 < p <∞. If p = 1, this

subspace is dense in
◦
H1,1, with respect to the relaxed topology of H1,1.

Proof. There is a standard approach to proving the density of locally Lip-
schitz functions in H1,p, which has been applied previously, starting with
various definitions of the space H1,p; compare, e.g. [K]. This approach
works in our context as well. For completeness, we indicate the argument.

Assume first that 1 < p < ∞. It suffices to show that if f ∈ H1,p(U)
and B6d(z) ⊂ U , then f |Bd(z) is the limit in H1,p(Bd(z)), of a sequence of
Lipschitz functions {fn}.

By (4.19), for all 0 < n < ∞, there exists An ⊂ Bd(z), such that the
Lipschitz constant of f |An is bounded above by n, and (as follows from
the weak type-(1,1) estimate) µ(Bd(z) \An) = o(n−1) as n→∞.

Let fn : Bd(z)→ R be the Lipschitz function, with fn |An = f |An and
Lipschitz constant, Lip fn ≤ n, obtained from MacShane’s Lemma, (8.2)
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(with A of (8.2) = An). Clearly, for z ∈ An a Lebesgue point, we have
Lip (fi − fj)(z) = 0, for all i, j ≥ n. Thus, the estimate, µ(Bd(z) \ An) =
o(n−1) as n → ∞, together with (4.3) and fi |Aj = f |A, for i, j ≥ n,
implies that the sequence, {fn}, is Cauchy in H1,p(Bd(z)). Since, fn |An =

f |A, it follows that fn
H1,p−−−→ f .

We point out that the weak type (1,1)-estimate enables us to avoid an
appeal to Mazur’s lemma (valid only for p > 1); compare [K].

Given the density of locally Lipschitz functions in H1,p, our assertion

for
◦
H1,p follows by a straightforward argument in which a sequence of cut

off functions is employed in a manner analogous to that in the proof of
Lemma 2.17

If p = 1, the above argument can also be applied to find a sequence of
locally Lipschitz functions converging in the H1,1 norm to a given f ∈ H1,1,
provided we assume that f has a generalized upper gradient in L1. This
implies our assertions concerning the relaxed topology, for the case p = 1. �

Remark 4.25. If the set, U , satisfies a suitable chain condition as in
[HKo], then it follows that the set of (globally) Lipschitz functions is dense
in H1,p.

Proposition 4.26. Let (Z,µ) satisfy (0.1), and (4.3), for some 1 ≤ p <∞.
If f is Lipschitz and z is a Lebesgue point of gp, for g a generalized upper
gradient of f , then

Lip f(z) ≤ 22κ+2τg(z) . (4.27)

In particular, if 1 < p <∞ and z is a Lebesgue point of (gf )p, then

Lip f(z) ≤ 22κ+2τgf (z) . (4.28)

Proof. From assumption that z is a Lebesgue point of (gf )p, it follows
that we can write gf = gf (z) + h, where the normalized Lp-norm of the
restriction of h to the ball, Br(z), goes to zero as r→ 0.

Fix η > 0. On Br(z) with its normalized measure, by Minkowski’s
inequality, we have Mp(gf ) ≤ gf (z) +Mp(h). Thus, the subset of Br(z) on
which Mp(h) > η contains the subset on which Mp(gf ) > gf (z) + η. By
applying (4.16), (4.17), with h in place of g, it follows that on Br(z), the
relative measure of the former subset (and hence, the latter) is as small as
we like, provided that we choose r sufficiently small.

Fix ε > 0. It follows from (4.19) and (0.1), that for r ≤ r(gf , ε)
sufficiently small and all z with z, z = r, there exist z1, z2 with z1, z ≤
εr, z2, z ≤ εr and |f(z1) − f(z2)| ≤ 22κ+2τg(z)r. Hence, |f(z) − f(z)| ≤
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22κ+2τg(z)r + 2 · Lip f · εr. Since ε is arbitrary, this suffices to complete
the proof. �

From Proposition 4.26 together with Theorem 3.14, we obtain the fol-
lowing corollary (which could actually be proved directly, without recourse
to Proposition 4.26, and hence to Theorem 4.14).

Corollary 4.29. Let (Z,µ) satisfy (0.1), and (4.3), for some 1 < p <∞.
If f is Lipschitz and z is a Lebesgue point of (gf )p, then gf (z) = 0 implies
Lip f(z) = 0. In particular, if f is asymptotically generalized linear at z,
then gf (z) = 0, if and only if lip f(z) = 0, if and only if Lip f(z) = 0.

Proof. This follows immediately from Theorem 3.14. �

Corollary 4.30. If (Z,µ) satisfies (0.1), and (4.3), for some 1 < p <∞.

Let {fi} be a sequence of Lipschitz functions, such that fi
H1,p−−−→ f . Then

for all ε > 0, there exists Nε, such that |Lip (fi−fj)|Lp < ε, for i, j ≥ Nε. If

in particular, f is Lipschitz, then Lip (f −fi)
Lp−→ 0 and so Lip fi

Lp−→ Lip f .

We now come to the uniqueness statement for our generalization of
Rademacher’s theorem. It will suffice to assume Z 6= {z}, for some z. The
proof depends on the following four lemmas.

For z ∈ Z, we put ρz(z) = z, z.
Note that if z is an isolated point of Z, then from (0.1), we get µ(z) > 0,

and since Z 6= {z}, we have µ(Z \ {z}) > 0 as well. By applying (4.3) to
the characteristic function of {z}, we conclude that no such isolated point
exists.

Lemma 4.31. Let (Z,µ) satisfy (0.1), and (4.3), for some 1 < p <∞. Let
µ(A) > 0 and let z be a Lebesgue point of A. Then there exists B ⊂ A,
with µ(B) > 0, such that gρz(z) > 0, for all z ∈ B.

Proof. Assume that there exists no such subset B. Since Lip ρz ≤ 1, by
applying (4.3) to ρz |Br(z), and letting r→ 0, we get |ρz − (ρz)z,r| = o(r).

By the discussion preceding the statement of the lemma, there exists a
sequence of points, zi → z, with zi ∈ A, zi 6= z, for all i. From this together
with (0.1), we easily contradict the assertion of the previous paragraph. �

Standard proofs of Rademacher’s theorem for Lipschitz functions in Rn

make use of the fact that the unit sphere has a countable dense subset; see
for example, [EG]. A similar point occurs in the next lemmas.

Given real valued functions, f1, . . . , fk, we put f(a) = a1f1 + · · ·+ akfk.
A k-tuple, (ã), will be called rational, if all its entries are rational numbers.



Vol. 9, 1999 DIFFERENTIABILITY OF LIPSCHITZ FUNCTIONS 455

Lemma 4.32. Let (Z,µ) satisfy (0.1), and (4.3), for some 1 < p <∞. For
all 1 ≤ i ≤ k, let fi : Z → R be Lipschitz, with Lip fi ≤ L. Let Z1 ⊂ Z
denote the subset of points, z, such that for all rational k-tuples, (ã), the
function, f(ã), is asymptotically generalized linear at z. Then µ(Z \Z1) = 0
and the function, f(a), is asymptotically generalized linear at z, for all (a)
and all z ∈ Z1. Moreover,∣∣gf(a′)(z)− gf(a′′)(z)

∣∣ ≤ L(|a′1 − a′′1|+ · · ·+ |a′k − a′′k|) , (4.33)

for all (a′), (a′′) and z ∈ Z1.

Proof. Since the set of rational numbers is countable, it follows from The-
orem 3.7, that µ(Z \ Z1) = 0.

If (a′1, . . . , a
′
k), and (a′′1, . . . , a

′′
k), are arbitrary k-tuples, then by Propo-

sition 1.11 and (3.3), for µ-a.e. z, we have∣∣gf(a′)(z)− gf(a′′)(z)
∣∣ ≤ L(|a′1 − a′′1|+ · · ·+ |a′k − a′′k|) . (4.34)

This has the following consequences:

i) If z is a Lebesgue point of (gf(a′))
p and of (gf(a′′))

p, then (4.34) holds.
ii) Let {(ã)j}, be a sequence of rational k-tuples converging to an arbi-

trary k-tuple (a). Since in particular, z ∈ Z1 is a Lebesgue point of
(gf(ã)j

)p, for all f(ã)j , it follows easily that z is a Lebesgue point of
(gf(a))

p and limj→∞ gf(ã)j
(z) = gf(a)(z).

iii) Similarly, it follows that f(a) is asymptotically generalized linear at
z ∈ Z1.

From ii), iii), it follows that f(a) is asymptotically generalized linear at
z, for all (a), and hence by i) that (4.33) holds for all (a) and all z ∈ Z1.
This suffices to complete the proof. �

Lemma 4.35. Let (Z,µ) satisfy (0.1), and (4.3), for some 1 < p <∞. Let
f1, . . . , fk, gf(a), Z1, be as in Lemma 4.31. Let Z2 ⊂ Z1 denote the subset
of points, z, such that z is a Lebesgue point of Lip f(ã), for all rational
k-tuples (ã). Then µ(Z \ Z2) = 0 and z is a Lebesgue point of Lipf(a), for
all (a). Moreover,

gf(a)(z) ≤ Lip f(a)(z) ≤ Lip f(a)(z) ≤ 22κ+2τgf(a)(z) , (4.36)

for all (a) and z ∈ Z2.

Proof. By an argument completely analogous to that given in the proof of
Lemma 4.32, it follows that µ(Z \ Z2) = 0 and that z is a Lebesgue point
of Lip f(a), for all (a) and z ∈ Z2. For all (a) we have gf(a)(z) ≤ Lip f(a)(z),
for µ-a.e. z. Since z ∈ Z2 implies z is a Lebesgue point of gf(a) and of
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Lip f(a), it follows that gf(a)(z) ≤ Lip f(a)(z). In view Proposition 4.26,
relation (4.36) holds as well. �

Lemma 4.37. Let (Z,µ) satisfy (0.1), and (4.3), for some 1 < p <∞. Let
fi, gf(a) , Z1 ⊂ Z, be as in Lemma 4.32. If for some z ∈ Z1 and all (a) 6= 0,
we have gf(a)(z) > 0, then k ≤ N(κ, τ).

Proof. Since f(a) is asymptotically generalized linear at z, it follows from
Theorem 3.14 that for all ε > 0, there exists rε > 0, such that the inequality,
(4.9), holds (for a suitable constant) on Br(z), for all 0 < r < rε and all
f(a), for which the set, (a), lies in a certain ε-dense subset of the unit sphere
in Rk. By Lemma 4.32 and obvious continuity argument, this implies that
(4.9) holds on Br(z), for all 0 < r < rε and all f(a) (possibly with a slightly
different constant). Thus, our assertion follows from Theorem 4.8. �

We emphasize that by means of Proposition 1.18, part iii) of the follow-
ing Theorem 4.38 can immediately be rephrased in terms of the functions
fr,z. In this way, we obtain the counterpart of (0.2)–(0.4) and in particular,
the relative formulation of uniqueness given in section 0.

Given f1, . . . , fk and f we put f(a0,(a)) = a0f + a1f1 + · · ·+ akfk. In i)
below, the set, Z2(α) denotes the subset defined in Lemma 4.35 with respect
to the collection of Lipschitz functions, fα1 , . . . , f

α
k(α). The set, Z2(f, α)

denotes the corresponding subset for the collection of Lipschitz functions,
f, fα1 , . . . , f

α
k(α).

We point out that the functions, bαi (z; f), which appear below, play
the role of partial derivatives, ∂f/∂fαi . We also mention that although for
the present, we are working with a fixed value of p, in actuality the sets,
Uα, Vα(f), of Theorem 4.38 below, can be chosen so that the conclusions
hold, no matter which value, p′ ∈ [p,∞), is used in defining the notion of
asymptotic generalized linearity; see Corollary 6.38.

Theorem 4.38 (Relative uniqueness; Rademacher 2). There exists N =
N(κ, τ) such that the following holds. Let (Z,µ) satisfy (0.1), and (4.3), for
some 1 < p < ∞. Then there exists a countable collection of measurable
sets, Uα, with µ(Uα) > 0, and Lipschitz functions, fα1 , . . . , f

α
k : Z → R,

with, 1 ≤ k = k(α) ≤ N , such that µ(Z \ ∪αUα) = 0, and for all α, f(a),
the following holds:

i) Uα ⊂ Z2(α). In particular, for all z ∈ Uα, the function, fα(a), is
asymptotically generalized linear at z and (4.33), (4.36) hold.

ii) gfα(a)
(z) > 0, for all (a) 6= 0 and z ∈ Uα.
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iii) For f : Z → R Lipschitz, there exists Vα(f) ⊂ Z2(f, α) ∩ Uα,
with µ(Uα \ Vα(f)) = 0, and Borel functions, bα1 (z; f), . . . , bαk (z; f),
of class L∞, such that if z ∈ Vα(f), then gf(−1,(a))(z) = 0, if and only
if Lip f(−1,(a))(z) = 0, if and only if Lip f(−1,(a))(z) = 0, if and only if
(a) = (bα)(z; f).

Proof. Let µ(A) > 0. Clearly, it suffices to show that there exists, U ⊂ A,
with µ(U) > 0, satisfying i)–iii) above.

It follows from Lemmas 4.31, 4.37, that for any A, with µ(A) > 0, there
exists a maximal k, wth 1 ≤ k ≤ N(κ, τ), such that i), ii) above hold on
some subset of positive measure, U ⊂ A, for some collection of Lipschitz
functions, f1, . . . , fk.

Given f , define the subset Z2 as in Lemma 4.35, with respect to the
functions f, f1, . . . , fk. Then µ(U \Z2) = 0. By the maximality of k, there
exist V (f) ⊂ (Z2 ∩ U), such that µ(U \ V (f)) = 0 and for z ∈ V (f), there
exists (b)(z), such that gf(−1,(b)(z;f)(z) = 0.

By (4.36), at points of Z2, we have gf(−1,(a))(z) = 0, if and only if
Lip f(−1,(a))(z) = 0, if and only if Lip f(−1,(a))(z) = 0.

If for z ∈ V (f), we also have gf(−1,(a))(z)=0 (equivalently, g(1,−(a))(z)=0)
then by (3.3), we get gf(b)(z;f)−(a)(z) = 0. This contradicts ii) unless (a) =
(b)(z). (Alternatively, in view of Proposition 1.16 and the previous para-
graph, we could use Lip f(−1,(b)(z;f))(z) = 0, Lip f(−1,(a))(z) = 0 to obtain
this contradiction.) This suffices to complete the proof of the existence and
uniqueness of the (bα)(z; f).

To see that these functions are Borel, we use the fact that (a) =
(b)α(z; f), if and only if Lip f(−1,(a))(z) = 0, together with the fact that
for (a) varying in some compact set, the Borel fuctions, Lip f(−1,(a))(z),
can be approximated in the sense of Lusin’s theorem, (uniformly in (a)) by
continuous functions. This follows from (1.16), together with∣∣Lip f(−1,(a′))

(z)− Lip f(−1,(a′′))
(z)
∣∣ ≤ L(|a′1 − a′′1|+ · · ·+ |a′k(α)− a′′k(α)|

)
.

(4.39)
For all z ∈ Uα, the function, Lip f(a)(z), has a positive lower bound

when (a) varies in the unit sphere in Rk(α). It is easy to see that we can
assume that the collection, {(Uα, fα1 , . . . , fαk(α))}, has been chosen such that
this lower bound is uniform. From this and an obvious rescaling argument,
it follows with (4.39), that the (bα)(z; f) are of class L∞. �

Remark 4.40. If in Theorem 4.38, we had been willing to replace Lip f(a)
by lip f(a), then by appealing to Theorem 3.14, we could have omitted
Lemma 4.35 and worked throughout with the set, Z1, in place of Z2.
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Corollary 4.41. If z ∈ Vα(f), then gf (z) = gfα(b)α(z;f)
(z).

Proof. For all (a) and µ-a.e. z, we have gf (z) ≤ gf−fα(a)
(z) + gfα(a)

(z) and
gfα(a)

(z) ≤ gf (z)+g−f+fα(a)
(z). In particular, this holds for all z = z ∈ Vα(f).

If we take (a) = (bα)(z; f) and use gfα
bα(z;f)

(z) = g−f+fα
bα(z;f)

(z) = 0, the
claim follows. �

For µ-a.e. z ∈ Uα1 ∩ Uα2 , the functions, {f1,i0,z}, corresponding to Uα1 ,
can be expressed as linear combinations of the functions, {f2,j0,z}, corre-
sponding to Uα2 and vice versa. In particular, if µ(Uα1 ∩Uα2) 6≡ 0, we have
k(α1) = k(α2). However, these values could differ if µ(Uα1 ∩ Uα2) = 0.

In this way, we obtain µ-a.e. defined matrices of L∞ functions, which
satisfy a 1-cocycle relation on the common domain of any three of them.
Hence, this collection determines a finite dimensional L∞ vector bundle,
T ∗Z. By Theorem 4.38, a Lipschitz function, f , determines an L∞ section
of this bundle. Recall in this connection, that a section of an of L∞ vector
bundle is a collection of local sections, one for each Uα, which satisfy the
appropriate compatibility condition, µ-a.e. on intersections, Uα1 ∩ Uα2 .

Definition 4.42. The L∞ section, df , of T ∗Z determined by the Lipschitz
function, f , is called the differential of f .

Note that the differential obviously satisfies the Leibnitz rule,

d(f1 · f2) = df1 · f2 + f1 · df2 . (4.43)

Remark 4.44. Although an L∞ vector bundle does not have topologi-
cal invariants, there do exist topological invariants of operators between
such bundles. For example, in the present context, one can define a kind
first de Rham cohomology group, H1

dR(Z,µ), of sections which are locally
differentials of Lipschitz functions modulo those which are globally such.
Clearly, this cohomology group is a bi-Lipschitz invariant of Z which de-
pends only on the measure class of µ. In a similar spirit, one can define a
first Lp-cohomology group.

Let (Z1, µ1) satisfy (0.1), and (4.3), for some 1 < p < ∞, and let
Z2 be an arbitrary metric space. If F : Z1 → Z2 and f : Z2 → R
are Lipschitz, then f ◦ F is Lipschitz and d(f ◦ F ) is defined µ1-a.e. If
in addition, (Z2, µ2) satisfies (0.1), and (4.3), for some 1 < p < ∞,
then df is defined as well. Moreover, given U1

α ⊂ Z1, U
2
β ⊂ Z2, as in

Theorem 4.38, the corresponding transposed Jacobian matrix is defined (in
obvious fashion) µ1-a.e. on F−1(U2

β)∩U1
α. However, in principle, we might

have µ1(Z1 \ ∪βF−1(U2
β)) > 0, unless we further assume that µ2(A) = 0
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implies µ1(F−1(A)) = 0, or equivalently, that the push forward measure,
F∗(µ1), is absolutely continuous with respect to µ2. In that case, there is
a natural induced map, F ∗ : T ∗Z2 → T ∗Z1, with the usual functorial prop-
erties. In particular, F ∗(df) = d(f ◦ F ) and d(f ◦ F ) can be calculated
in the usual fashion (i.e. from the transposed Jacobian matrix) µ1-a.e. on
F−1(U2

β) ∩ U1
α.

Remark 4.45. Consider (Z1, µ1), (Z2, µ2), with µ1, µ2 Ahlfors Q-regular,
for some Q > 1. Assume in addition that (4.3) holds for some 1 < p < Q.
According to [HeKo2], if F : Z1 → Z2 is quasiconformal then F∗(µ1), is
absolutely continuous with respect to µ2 (and (F−1)∗(µ2), is absolutely
continuous with respect to µ1). Moreover, there exist sets, Ai,j , with
µ1(Z1 \ ∪i,jAi,j) = 0, such that the following holds.

i) Every point of Ai,j is a Lebesgue point.
ii) B(iK)−1r(F (z)) ⊂ F (Br(z)) ⊂ BiKr(F (z)), for z ∈ Ai,j , r ≤ j−1.
It follows that if f : Z2 → R is Lipschitz, then f ◦ F |Ai,j is Lipschitz

as well. Moreover, if z ∈ Ai,j and f̃ is any Lipschitz extension of f |Ai,j ,
then |f(z) − f̃(z)| = o(z, z). As a consequence, f is asymptotically gener-
alized linear µ1-a.e. Hence, as above, there exists a natural induced map,
F ∗ : T ∗Z2 → T ∗Z1, such that F ∗(df) = d(f ◦ F ), and for which d(f ◦ F )
can be calculated in the usual fashion, µ1-a.e. on F−1(U2

β) ∩ U1
α, from the

transposed Jacobian matrix.
The properties of the function, f ◦ F , can be abstracted. Thus, rather

than considering Lipschitz functions on Z2, we can consider from the start,
more general functions, f , for which there exists a decomposition of the
space, (Z2, µ2), whose properties, with respect to f, are analogous to those
of the decomposition, {Ai,j}, for f ◦ F . As above, this class of functions
is stable under quasiconformal maps, given our previous assumptions (i.e.
1 < p < Q, etc.). In this way, our discussion can be made more symmetrical.

Remark 4.46. The discussion of Remark 4.45 and of the paragraph which
preceded it should be compared to that of section 14. There we consider
induced maps on tangent cones and their adjoints.

Theorem 4.47 (Existence and uniqueness of strong derivatives). Let
(Z,µ) satisfy (0.1), and (4.3), for some 1 < p < ∞. Then f ∈ H1,p if and

only if there exists a sequence of Lipschitz functions, fi
Lp−→ f , such that

df
Lp−→ v, for some v. Moreover, if f ∈ H1,p, then v is unique.

Proof. Since for Lipschitz functions, we have |df(z)| = gf (z), for µ-a.e.
z ∈ Z (see Corollary 4.41) this follows from Theorem 4.24, together with
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the fact that the map i : H1,p → Lp is an injection; see Remark 2.4 and
Theorem 2.7. �

It follows from Corollary 4.41, that for all z ∈ Uα, we can define a norm,
|(a)|α,z, on the space, Rk(α), such that for f Lipschitz, and z ∈ Vα(f), we
have |(bα)(z; f)|α,z = gf (z). We will also refer to this norm as the norm
on T ∗Zz.

Recall that any norm, | · |, on a k-dimensional vector space, V, is c(k)-
quasi-isometric to a distinguished inner product norm, || · ||, and in par-
ticular, to a uniformly convex norm. The corresponding inner product on
the dual space, V∗, is gotten by identifying the functions of V∗ with their
restrictions to the unit ball, B1(0) (as defined by | · |) and regarding the
functions so obtained elements of L2(B1(0)), where the measure is c(k)·Hk.
Here Hk denotes k-dimensional Hausdorff measure associated to the metric
defined by | · |, and c(k) = (k+ 1)V (k)/V (k + 2), where V (n) denotes the
volume of the unit ball in Rn. If the norm, | · |, happens to come from an
inner product, then we have || · || = | · |. In general, it is a standard fact
(and not difficult to verify) that | · |, and || · || are c(k)-quasi-isometric.

From Theorem 4.47 and the discussion of the previous paragraph, it
follows that the space, H1,p, has a canonical uniformly convex norm, || · ||1,p,
which is c(κ, τ)-quasi-isometric to its usual norm | · |1,p. The norm, || · ||1,p,
is the global norm obtained by integration with respect to µ of the pointwise
norm obtained by replacing each norm, |(a)|α,z, on the space, Rk(α), by the
canonically associated inner product norm, as described in the preceding
paragraph.

Thus, we get the following very important conclusion, which, via Theo-
rem 4.53 below, plays a crucial role in the proof of Theorems 5.1, 6.1, 12.7.

Theorem 4.48. Let (Z,µ) satisfy (0.1), and (4.3), for some 1 < p <
∞. Then the norm on H1,p is equivalent to a uniformly convex norm. In
particular, the space, H1,p is reflexive.

Remark 4.49. If the pointwise norm on the space of differentials is
strictly convex, then so is the global norm, | · |1,p, for 1 < p < ∞, the

conditions, f ∈ H1,p, fi
Lp−→ f , |gfi |Lp → |gf |Lp , imply fi

H1,p−−−→ f .

From Theorem 4.48 and Mazur’s lemma, we immediately get:

Theorem 4.50. Let (Z,µ) satisfy (0.1), and (4.3), for some 1 < p <∞.

If {fi} is a bounded sequence in H1,p such that fi
Lp−→ f , then there ex-

ists a sequence, f̂j
H1,p−−−→ f , such that each function, f̂j is a finite convex
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combination, f̂j =
∑Nj

0 ai,jfi.

As a corollary of Theorem 4.50 we have:

Theorem 4.51. Let (Z,µ) satisfy (0.1), and (4.3), for some 1 < p <∞.

Let || · ||1,p be a norm on H1,p equivalent to | · |1,p. If fi
Lp−→ f , then,

lim inf
i
||fi||1,p ≥ ||f ||1,p . (4.52)

In particular, this holds for the norm, ||f ||1,p = |f |Lp + |Lip f |Lp .
We call |Lip f |pLp , the Dirichlet p-energy.
A norm, || · ||, on T ∗Z, is an assignment to every measurable section,

ψ, of T ∗Z, a measurable function ||ψ(z)||, defined over ∪αUα, such that for
all α and z ∈ Uα, the function on Rk(α), defined by ||(a)||α,z = ||dfα(a)(z)||,
is a norm on Rk(α). We say that || · || is an equivalent norm on T ∗Z, if
there exists 0 < c <∞, such that λ−1|ψ(z)| ≤ ||ψ(z)|| ≤ λ|ψ(z)|.

For example, given (0.1), (4.3), the norm for which ||(a)||α,z = Lip fα(a)(z)
(i.e. ||df(z)|| = Lip f(z)) is an equivalent norm on T ∗Z; see Proposition 4.26
and compare Corollary 4.30.

The following theorem, will have several very significant applications;
see in particular, Theorems 5.1, 6.1, 12.5.

Theorem 4.53. Let (Z,µ) satisfy (0.1), and (4.3), for some 1 < p <∞.
Let || · || be an equivalent norm on T ∗Z. If {fi}, {hi}, are sequences, with
hi bounded in Lp, such that

fi
Lp−→ f , (4.54)∣∣|dfi(z)∣∣| ≤ hi(z) (for µ-a.e. z) , (4.55)

then ∣∣|df(z)
∣∣| ≤ lim sup

i→∞
hi(z) (for µ-a.e. z) . (4.56)

Proof. Let f̂j =
∑Nj

i=0 ai,jfi be as in Theorem 4.50. Put ĥj =
∑Nj

i=0 ai,jhi(z).
Then for µ-a.e. z, ∥∥df̂j(z)∥∥ ≤ Nj∑

i=0

ai,j ||dfj(z)|| ≤ ĥj(z) . (4.57)

We have lim supj→∞ ĥj ≤ lim supi→∞ hi, and since f̂j
H1,p−−−→ f , we also

get ||df̂j ||
Lp−→ ||df ||. This, together with (4.57), suffices to complete the

proof. �
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Define a riemannian metric on (Z,µ), to be an equivalent norm on
T ∗Z, such that for all α, z ∈ Uα, the norm, || · ||α,z , is given by an inner
product. It follows from the discussion preceding Theorem 4.48, that if
(Z,µ) satisfies (0.1), (4.3), then Z carries a canonical riemannian metric.

As above, a riemannian metric determines a norm on H1,p which is
equivalent to the usual one. In particular, in the presence of the type (1,2)
Poincaré inequality, (

|f − fz,r|2
)
z,r
≤ τ2s2(g2)z,r , (4.58)

the space, H1,2 carries a natural Dirichlet form.

Theorem 4.59. Let (Z,µ) satisfy (0.1), (4.58). Then for every L∞
riemannian metric, the associated Dirichlet form is closable and hence,
determines a canonical self-adjoint operator, ∆ on L2(Z). If in addition, Z
is compact, then (1 + ∆)−1 is a compact operator.

Proof. Since i : H1,2 → L2 is an injection or (what is essentially equiv-
alent in our context) since strong derivatives are unique in the sense of
Theorem 4.47, it follows by a standard argument that the Dirichlet form
is closable and hence, defines a unique self-adjoint operator; see Theorems
2.5, 2.7 and [Fuk]. The compactness of (1 + ∆)−1, given the compactness
of Z, is then a standard consequence of Theorem 4.8. �

Remark 4.60. In view of (4.43), one can derive Caccioppoli type inequal-
ities for eigenfunctions and their reciprocals; compare [HeKM]. Also, by
Theorem 4.47 and the results of [HKo] which were recalled in section 2 (see
(4.4), (4.5), the four conditions in the definition of “p-admissible weight”
hold; see [HeKM]. In view of these considerations the Hölder continuity of
the eigenfunctions can be proved by arguing as in the proof of Theorem 6.6
of [HeKM], which is based in part on Moser iteration. (Although the con-
text considered in [HeKM] is that of measures on Rn defined by weight
functions, the essential point is the validity of the above mentioned four
properties of the measure.)

Remark 4.61. In [St], self-adjoint Laplace operators on metric measure
spaces are obtained in a more restricted context, by an entirely different
method.

Example 4.62. With its standard Carnot-Caratheodory metric, the 3-
sphere, S3, has topological dimension 3 and Hausdorff dimension 4; see
[Gro2]. The cotangent bundle in our sense is just the dual of the horizontal
distribution, and hence, has dimension 2. For f Lipschitz, then gf , is
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the norm of the restriction of df to the horizontal distribution and the
associated Laplacian is the standard linear self-adjoint subelliptic Laplacian
in this case.

Let Hk denote k-dimensional Hausdorff measure and let dim denote
Hausdorff dimension.

In Theorem 13.4, it will be shown that for µ-a.e. z ∈ Uα, and all tangent
cones, Zz, there exists a surjective Lipschitz map, e : Zz → TZz, where, by
definition, TZz = (T ∗Zz)∗. In particular, Hk(α)(Br(w)) > c(k(α))rk(α), for
all Br(w) ⊂ Zz.

Let fα : Uα → Rk(α) be defined by fα(z) = (fα1 (z), . . . , fαk(α)(z)).

Conjecture 4.63. Hk(α)(fα(Uα)) > 0.
Conjecture 4.63 holds in the very special case in which the doubling

constant, κ, satisfies κ = k(α); see Theorem 13.12.
Remark 4.64. One can ask moreover, if Uα has a sort of measurable gen-
eralized product structure, corresponding (roughly) to a rectifiable direction
of dimension k(α) and a transverse direction in which the differentials of all
Lipschitz functions vanish. Such a formulation should account for examples
such as the Carnot-Caratheodory spaces of [Gro2], as well as the spaces of
nonintegral Hausdorff dimension of [BoP] and [L].

Motivation for our next conjecture is provided by the discussion of sec-
tion 11; compare also section 14.
Conjecture 4.65. If Z is a length space and on each set Uα, we have
k(α) = dim Uα then for µ-a.e. z, all tangent cones are Minkowski spaces,
i.e. finite dimensional normed linear spaces. Moreover, in this case, the
space, Z, is µ-rectifiable; see [F].

Remark 4.66. By employing considerations which are different from ours,
N. Weaver has independently defined a notion of cotangent bundle for any
metric measure space. In general, his cotangent bundle need not be finite
dimensional. However, given (0.1), and (4.3), for some 1 < p < ∞, his
cotangent bundle and ours are naturally isomorphic. The proof of this
assertion, which was worked out jointly with Weaver, relies on the results of
the present section, in particular, the finite dimensionality of our cotangent
bundle and the concommitant the reflexivity of H1,p, for 1 < p < ∞; for
details see [W]. Weaver has verified that for Carnot-Carathéodory and
Laakso spaces, his cotangent bundle (and hence, ours) has the dimension
the expected dimension, i.e. the dimension of the “horizontal” subspace of
any tangent cone; see [W].
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5 The Length Space Condition and gf = Lip f

The main result of this section is:
Theorem 5.1. Let (Z,µ) satisfy (0.1), and (4.3), for some 1 < p < ∞,
with Z a complete length space. If f is locally Lipschitz, then gf (z) =
Lip f(z), for µ-a.e. z.

In Theorem 6.1, we will remove the assumption that Z is a length space,
by showing that Lip ρf(z) = Lip ρ0

f(z), for µ-a.e. z. Here, Lip ρf(z) denotes
the pointwise Lipschitz constant with respect to the underlying metric, ρ,
and Lip ρ0

f(z) denotes the pointwise Lipschitz constant with respect to the
canonically associated length space metric, ρ0; for the existence of ρ0, see
section 17, [DSe2], and [Se5, Lemma 2.38].

Since our considerations are essentially local, we need only assume that
Z is locally a complete length space, i.e. for all z ∈ Z, there exists r(z) > 0,
such that for all z1, z2 ∈ Br(z), there is a geodesic, γ, from z1 to z2, with
length, ` = z1, z2, the distance from z1 to z2. With the above under-
standing, throughout the remainder of the paper, for brevity, the adjectives
“locally” and “complete” will often be omitted.

Recall that if Z is a length space satisfying no additional assumptions,
and g is a continuous upper gradient for the Lipschitz function f , then it
is obvious that Lip f(z) ≤ g(z), for all z. By using this fact, together with
Theorem 4.50, we can reduce the proof of Theorem 5.1 to the following
result concerning upper gradients.

Let Bd(z) denote the closed ball of radius d. The reason for stipulating
closed balls in Lemma 5.2 stems from the role of compactness in the proof
of Lemma 5.18. (Recall that the existence of nontrivial measure satisfying
(0.1) implies that balls of finite radius are totally bounded. Hence, if Z is
complete, closed balls of finite radius are compact.)
Lemma 5.2. Let (Z,µ) satisfy (0.1), and (4.3), for some 1 < p < ∞,
with Z a length space. Let f ∈ Lp(B12d(z)), and let g ∈ Lp(B12d(z)) be
a positive countably valued, lower semicontinuous function, with values in
[η,∞], for some η > 0. If g is an upper gradient for f , then on Bd(z),

there exist sequences of Lipschitz functions, fj
Lp−→ f and continuous upper

gradients, vj of fj , such that lim supj→∞ vj ≤ g, µ-a.e.

Proof of Theorem 5.1. Since the statement is local, it suffices to consider
fuctions defined on balls, B12d(z) of finite nonzero radius.

Let fi
Lp−→ f , gi

Lp−→ gf , with gi an upper gradient for fi. The Vitali-
Caratheodory theorem asserts that for all λ > 0 there exists a countably
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valued, lower semicontinuous function, gλ,i, such that gλ,i ≥ min(gi, ηλ),
for some ηλ > 0, and |gi − gλ,i|Lp ≤ λ. By choosing a sequence, λi → 0,
and replacing gi by gλ,i, we can assume without loss of generality that the
functions gi themselves, have the above mentioned properties.

We can apply Lemma 5.2 to obtain diagonal sequences, {fk,j(k)},{vk,j(k)},
with vk,j(k) a continuous upper gradient for fk,j(k), such that fk,j(k)

Lp−→ f ,
lim supk→∞ vk,j(k) ≤ gf , µ-a.e. From the continuity of vk,j(k) we get
Lip fk,j(k) ≤ vk,j(k). By applying Theorem 4.53 (with ||df(z)|| = Lip f(z))
we get Lip f(z) ≤ gf (z), for µ-a.e. z. Since gf is the minimal upper gradi-
ent, this suffices to complete the proof. �

By referring to the proof of Theorem 4.53, we see that in proving Theo-
rem 5.1, the following strengthening of Theorem 4.24 has been established.

Theorem 5.3. Let (Z,µ) satisfy (0.1), and (4.3), for some 1 < p < ∞,

with Z a length space. For 1 < p < ∞, there exists, f̂k,j(k)
H1,p−−−→ f ,

v̂k,j(k)
Lp−→ gf , where v̂k,j(k) is a continuous upper gradient for f̂k,j(k).

The proof of Lemma 5.2 utilizes an auxilliary function, Fg(z1, z2), asso-
ciated to the function g. The initial part of the discussion of the properties
of the function, Fg, requires no special assumptions on (Z,µ).

Fix A ⊂ Z. Given a nonnegative Borel function, g : A→ [0,∞], define
an associated function, Fg : A×A→ [0,∞], by

Fg(z1, z2) = inf
c

∫ `

0
g(c(s)) ds , (5.4)

where the infimum is over all rectifiable curves, c ⊂ A, from z1 to z2. If no
such curves exist, we put Fg(z1, z2) =∞.

It is trivial to check that Fg satisfies,

Fg(z1, z2) = Fg(z2, z1) . (5.5)
Fg(z, z) = 0 . (5.6)
Fg(z1, z2) + Fg(z2, z3) ≥ Fg(z1, z3) . (5.7)

Thus, Fg defines a length space pseudometric, which is obtained from the
length space pseudometric canonically associated to the given metric, by a
conformal deformation with conformal factor g.

Let Fg(z, z1) <∞, Fg(z, z2) <∞. From (5.5), (5.7), it follows that for
this fixed z, and all rectifiable curves, c, from z1 to z2, we have∣∣Fg(z, z1)− Fg(z, z2)

∣∣ ≤ ∫ `

0
g(c(s)) ds . (5.8)



466 J. CHEEGER GAFA

Note however, that Fg(z, z1) =∞, Fg(z, z2) =∞, does not imply Fg(z1, z2)
=∞, Thus, if for some fixed z, the function, Fg(z, z), is not bounded , then g,
need not be an upper gradient for Fg(z, z); compare the sentence following
(1.2). Below, we will obtain additional control over the function, Fg, given
that (0.1), (4.3) hold; see Lemma 5.27.

Clearly, we have

Fg1 + Fg2 ≤ Fg1+g2 . (5.9)

Let ρ(z1, z2) = z1, z2. If there exists a minimal geodesic from z1 to z2, then
for any constant function, δ ≥ 0,

Fδ(z1, z2) = δρ(z1, z2) , (5.10)

and so,

Fg(z1, z2) + δρ(z1, z2) ≤ Fg+δ(z1, z2) . (5.11)

The following proposition is trivial to check.

Proposition 5.12. Let g : A→ [0,∞].

i) If g is an upper gradient for f , then for all z1, z2,∣∣f(z1)− f(z2)
∣∣ ≤ Fg(z1, z2) . (5.13)

ii) If for some fixed z, the function, Fg(z, z) is bounded, then g(z), is an
upper gradient for Fg(z, z). In particular, if A is rectifiably connected
and g is bounded, then Fg(z, z) is Lipschitz.

Let g : A → [0,∞]. Let f : E → R be bounded, where E ⊂ A, and
assume that (5.13) holds for all z1, z2 ∈ E. Define the function, f∗,g : A→
R, by

f∗,g(z) = inf
z∈E

f(z) + Fg(z, z) , (5.14)

and the function, f∗,g : A→ R, by

f∗,g(z) = sup
z∈E

f(z)− Fg(z, z) . (5.15)

If we takeE = {z}, then the the following lemma reduces to (5.13); compare
also (8.2), (8.3). The proof, which is a routine exercise, will be omitted.

Lemma 5.16. If (5.13) holds for all z1, z2 ∈ E, then the functions,
f∗,g, f∗,g, have the following properties:

i) f∗,g |E = f |E, f∗,g |E = f |E.
ii) If f̃ is any function such that f̃ |E = f |E and g is an upper gradient

for f̃ , then

f∗,g ≤ f̃ ≤ f∗,g . (5.17)
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iii) If one of the functions f∗,g, f∗,g, is bounded then both are bounded
and in this case, g(z) is an upper gradient for f∗,g, f∗,g. In particular,
if A is rectifiably connected and g is bounded, then the functions,
f∗,g, f∗,g, are Lipschitz.

In the following Lemma 5.18, we allow the possibility that the functions,
g, Fg, take the value, ∞, on a set of positive measure.
Lemma 5.18. Let A be compact. Let g ∈ Lp be a countably valued, lower
semicontinuous function with values in [η,∞], for some η > 0. Then there
exists a nondecreasing sequence of Lipschitz functions, {uj}, such that {uj}
converges pointwise to g and {Fuj} converges pointwise to Fg.

Proof. The function, g, has the representation,

g = η +
∞∑
k=1

ekχUk , (5.19)

where Uk is a relatively open subset of A and χUk denotes the characteristic
function of Uk. Moreover, η > 0 and ek ≥ 0 for all k.

As a standard consequence, it follows that g is the pointwise limit of a
nondecreasing sequence of Lipschitz functions. This can be seen as follows.

Write Uk = ∪iKk,i, where for all k, i, the set Kk,i is a compact subset
of the interior of Kk,i+1. Let ψk,i : Z → [0, 1] be a nonnegative Lipschitz
function supported in Kk,i+1 such that ψk,i |Kk,i ≡ 1. Thus, if we put

uj = η +
j∑

k=1

ekψk,j , (5.20)

then {uj} is an nondecreasing sequence of Lipschitz functions whose point-
wise limit is g.

Using the fact that the sequence, {uj}, is nondecreasing, we now show
that for all (z1, z2), we have

lim
j→∞

Fuj (z1, z2) = Fg(z1, z2) . (5.21)

Note first that it suffices to assume that there exists L <∞, such that
limj→∞ Fuj (z1, z2) = L. Otherwise, there is nothing to prove. Also, we
can assume that there exists at least one rectifiable curve from z1 to z2.
Otherwise, Fuj (z1, z2) = Fg(z1, z2) =∞.

Since uj ≥ η > 0 is continuous and A is compact, it follows by an
obvious compactness argument, that there exists ` < ∞, such that for
all j, there exists cj : [0, `j ]→ A, with `j ≤ `, such that

Fuj (z1, z2) =
∫ `j

0
uj(cj(s)) ds . (5.22)
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Similarly, there exists c∞ : [0, `∞]→ A, such that after passing to a subse-
quence, we can assume that `j → `∞ and cj → c∞.

By the monotone convergence theorem, for all ψ > 0, there exists N1,
such that for j ≥ N1,

Fg(z1, z2) ≤
∫ `∞

0
g(c∞(s))ds

≤
∫ `∞

0
uN1(c∞(s))ds+ ψ . (5.23)

From the continuity of uN1 , it follows that there exists N2 such that for
j ≥ N2, we have∫ `∞

0
uN1(c∞(s)) ds ≤

∫ `j

0
uN1(cj(s)) ds+ ψ . (5.24)

Since the sequence, {uj}, is nondecreasing, for all j ≥ max(N1,N2), we
get ∫ `j

0
uN1(c∞(s)) ds ≤

∫ `j

0
uj(cj(s)) ds+ ψ

= Fuj (z1, z2) + ψ .

(5.25)

Relations (5.23)–(5.25), give (5.21). �

Remark 5.26. As pointed out to us by Seppo Rickman, there is a strong
similarity between the proof of Lemma 5.18 and the proof of Ziemer’s theo-
rem concerning the equality of the capacity and the modulus for condensers;
compare also Theorem 9.6 and see [Ri, p. 54].

We now show that if (0.1), (4.3) hold, then we can obtain additional
control over the function Fg(z, z).

As in section 4, for a given function, h, let Mph denote the maximal
function of h; see (4.22), (4.23). Note that Mp(c+ h) ≤ |c|+Mph, for any
constant function c.
Lemma 5.27. Let (Z,µ) satisfy (0.1), and (4.3), for some 1 ≤ p < ∞,
with Z a length space. Let g : U → [0,∞], g ∈ Lp(U). If Mpg(z) = t <∞
and Br(z) ⊂ U then:

i) g |Br(z) is a generalized upper gradient for Fg(z, z) |Br(z). Moreover,

−
∫
Br(z)

Fg(z, z) dµ ≤ 24κτrt , (5.28)

and (
−
∫
Br(z)

(Fg(z, z))p dµ
)1/p

≤ (24κ + 1)τrt , (5.29)
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ii) In particular, Fg(z, z) <∞ for µ-a.e. z ∈ Br(z).
iii) If Mpg(zk) = t < ∞, Brk(zk) ⊂ U , for k = 1, 2, and Br1(z1) ∩

Br2(z2) 6= ∅, then Fg(z1, z2) <∞.

Proof. By the Vitali-Caratheodory theorem, we can assume that g is count-
ably valued, lower semicontinuous, with values in [η,∞], for some η > 0.

Let {uj} be as in by Lemma 5.18. By the monotone convergence theo-
rem, we have

−
∫
Br(z)

Fg(z, z) dµ = lim
j→∞

−
∫
Br(z)

Fuj (z, z) dµ . (5.30)

Since the function, Fuj (z, z) is Lipschitz, every point (and in particular, z)
is a Lebesgue point of this function. Thus, the right-hand side of (5.30) can
be bounded by the “telescope” estimate (4.22). This gives (5.28), which
directly implies ii), iii).

Finally, from (5.30), (4.3) and the monotone convergence theorem, it

follows easily that Fuj (z, z)
Lp−→ Fg(z, z), on Br(z) and that (5.29) holds.

Thus, g |Br(z) is a generalized upper gradient for Fg(z, z) |Br(z), as as-
serted. �

Proof of Lemma 5.2. For 0 ≤ t < ∞, let Ct ⊂ Bd(z) denote the subset
consisting of Lebesgue points, z, of f such that Mpg(z) < t. Since g ∈ Lp,
the weak type (1,1) estimate implies that ∪tCt has full measure in Bd(z).
Moreover, f |Ct is Lipschitz, with Lipschitz constant L(κ, τ, t, d); see (4.19).

Fix ε > 0. Let Gε,t = {zε,t,k} denote a maximal subset of Ct, such
that distinct points of Gε,t are at mutual distance at least ε. Thus, Gε,t is
ε-dense in Ct. Moreover, by a standard result, (0.1), implies that there is
a definite bound on the cardinality of Gε,t. Clearly, we can arrange

Gε,t ⊂ Gε′,t′ (if ε′ ≤ ε, t ≤ t′) . (5.31)

By Lemma 5.27, Fg(z1, z2) < ∞ for z1, z2 ∈ Ct. Since, Gε,t is a finite
set, it follows that for all δ > 0, there exists N(ε, δ, t) < ∞, such that for
j ≥ N(ε, δ, t), and zε,k1 , zε,k2 ∈ Gε,t,

0 ≤ Fg(zε,k1 , zε,k2)− Fuj (zε,k1 , zε,k2) < 1
2εδ . (5.32)

Thus, by (5.9), (5.10), (5.13), we get∣∣f(zk1,t)− f(zk2,t)
∣∣ ≤ Fg(zk1,t, zk2,t)

≤ Fuj+δ(zk1,t, zk2,t) (if j ≥ N(ε, δ, t)). (5.33)

Let j ≥ N(ε, δ, t). In view of (5.33), we can apply Lemma 5.16, with
B = Gε,t and g of that lemma replaced by uj + δ. Let fε,δ,t,j = f∗,uj+δ. We
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also put fε,δ,t,∞ = f∗,g+δ, f ε,δ,t,∞ = f∗,g+δ. Thus,
fε,δ,t,∞ ≤ fε,δ,t,j ≤ f ε,δ,t,∞ , (5.34)

and
fε,δ,t,∞ ≤ f ≤ f ε,δ,t,∞ . (5.35)

Relation (5.31) implies that the function, fε,δ,t,∞, is an increasing func-
tion of ε, δ, t−1, and that the function, f ε,δ,t,∞, is a decreasing function of
ε, δ, t−1. Thus, the nonnegative function, (f ε,δ,t,∞−fε,δ,t,∞), is a decreasing
function of ε, δ, t−1.

Since the function, uj + δ, is a continuous upper gradient, for fε,δ,t,j , it
follows that fε,δ,t,j is Lipschitz and Lip fε,δ,t,j ≤ uj + δ ≤ g + δ.

Claim: If for fixed δ, t, we successively let j → ∞, ε → 0, then
fε,δ,t,j |Ct converges in Lp to f |Ct.

If we temporarily grant the above claim, then the proof can be com-
pleted as follows. Let successively, j → ∞, ε → 0, t → ∞, and finally,
δ → 0. Take a suitable diagonal subsequence from the functions, fε,δ,t,j , and
the corresponding subsequence from {uj + δ}. Then by Lebesgue’s domi-
nated convergence theorem, we obtain a sequence of Lipschitz functions, fi,

with continuous upper gradients, vi, such that fi
Lp−→f , lim supi→∞ Lip vi≤g.

This suffices to complete the proof.
Proof of claim. Since Ct ⊂ ∪kB2ε(zε,t,k), from (5.34), (5.35) and the
definition of fε,δ,t,∞, f ε,δ,t,∞, we get∫

Ct

|f − f ε,δ,t,j |p dµ ≤ 2
∑
k

∫
B2ε(zε,t,k)

(
Fg+δ(zε,t,k, z)

)p
dµ . (5.36)

By a standard consequence of (0.1), the multiplicity of the covering,
{B2ε(zε,t,k)}, is at most 24κ. Thus, from (5.36) and (5.28) (with r = 2ε) we
get∑
k

∫
B2ε(zε,t,k)

(
Fg+δ(zε,t,k, z)

)p
dµ ≤ 24κ+1((24κ + 1)τ2ε(δ + t)

)p
µ(B2d(z)) .

(5.37)
The inequalities, (5.36) and (5.37), imply our claim. �

Remark 5.38. Note that it follows from (5.28), that for all g, z such that
Mpg(z) <∞, the point, z, is a Lebesgue point of the function Fg(z, z).

6 Doubling and Poincaré Implies gf = Lip f

In this section, we remove from Theorem 5.1, the hypothesis that Z is a
length space.
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Theorem 6.1. Let (Z,µ) satisfy (0.1), and (4.3), for some 1 < p < ∞.
Then gf (z) = Lip f(z), for µ-a.e. z.

Let ρ denote the underlying metric on Z and let ρ0 denote the canoni-
cally associated length space metric as in section 17. Denote by Lip ρ f, g

ρ
f ,

respectively Lip ρ0
f, gρ0

f (z) the pointwise Lipschitz constant and minimal
upper gradient for the metrics, ρ, ρ0.

Theorem 6.1 is a direct consequence of the following proposition.

Proposition 6.2. . Let (Z,µ) satisfy (0.1), and (4.3), for some 1 < p <∞.
Then Lip ρ f(z) = Lip ρ0

f(z), for µ-a.e. z.

Proof of Theorem 6.1. We have gρf (z) ≤ Lip ρ f(z) = Lip ρ0
f(z) = gρ0

f (z),
for µ-a.e. z, where the last equality is the content of Theorem 5.1. How-
ever, since ρ ≤ ρ0, it follows that gρ0

f (z) ≤ gρf (z), for µ-a.e. z; compare
Remark 2.14. This suffices to complete the proof. �

The strategy for proving Proposition 6.2 is analogous to that used in
the proof of Theorem 5.1. We first prove Proposition 6.2 for the case in
which f is a distance function, ρ0(z, z). Then we use an approximation
theorem (Theorem 6.5) together with Theorem 4.53.

Lemma 6.3. Let (Z,µ) satisfy (0.1), and (4.3), for some 1 < p < ∞.
Then Lip ρ ρ0(z) = 1 = Lip ρ0

ρ0(z), for µ-a.e. z.

Proof. We have ρ0(z, z) = limε→0 ρz,ε(z), where ρz,ε is the function defined
in Theorem 17.1. As noted there, Lip ρ ρz,ε(z) ≤ 1, for all z, z, ε. Since
Lip ρ0

ρ0(z) ≡ 1, our assertion follows from Theorem 4.53. �

Remark 6.4. In the application to the proof of Proposition 6.2, we will
take the underlying metric in the following Theorem 6.5 to be the length
space metric ρ0. In section 10, we will need a more general formulation
which allows for λ-quasi-convex metrics. Although this extension is essen-
tially trivial, we just write the proof in the quasi-convex case in order to
simplify the exposition; compare Remark 6.23.

As usual, let Lip f denote the Lipschitz constant of f .

Theorem 6.5. Let (Z,µ) satisfy (0.1) with Z quasi-convex. Let f : BR(z)
→ R be Lipschitz, where 0 < R < ∞. Then there exists a sequence of
Lipschitz functions, fi : BR(z) → R, and for each i, a finite collection of
pointed closed sets, zi,` ∈ Ci,` ⊂ BR(z), and constants, 0 ≤ ci,`, such that

fi
unif.−−→ f , (6.6)

Lip fi → Lip f , (6.7)
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Lip fi
Lp−→ Lip f (1 < p <∞) . (6.8)
fi(z) |Ci,` = ci,`zi, z , (6.9)

lim
i→0

µ
(
BR(z) \ ∪`Ci,`

)
= 0 . (6.10)

Proof of Proposition 6.2. We apply Theorem 6.5, to Z equipped with the
metric ρ0. Define the function hi by

hi(z) =

{
Lip ρ0

fi(z) z ∈ ∪`Ci,`,
Lip ρ fi(z) z ∈ Bd(z) \ ∪`Ci,` .

(6.11)

By (6.9), (6.11) together with Lemma 6.3, we have Lip ρfi(z) ≤ hi(z),
for µ-a.e. z. From (6.7), (6.10), (6.11), we get lim supi hi(z) ≤ Lip ρ0

f(z),
for µ-a.e. z. By Theorem 4.53, which we apply with ||df(z)|| = Lip ρ f(z),
this suffices to complete the proof. �

The proof of Theorem 6.5 will require a number of lemmas. We begin
by recalling a property of doubling measures on length spaces. The follow-
ing assertion is in the spirit of relative volume comparison for riemannian
manifolds with a definite lower Ricci curvature bound, although weaker.
Proposition 6.12 ([CoMi2]). Let (Z,µ) satisfy (0.1) and assume that Z
is a length space. Then for all z, s and 0 < δ < 1,

µ
(
Bs(z) \B(1−δ)s(z)

)
≤ (2δ)βµ(Bs(z)) , (6.13)

where
β = log2(1 + 2−5κ) . (6.14)

In connection with Lemma 6.15 below, note that the right-hand side of
(6.18) can be made arbitrarily small by taking δ sufficiently small and N
sufficiently large.
Lemma 6.15. Let (Z,µ) satisfy (0.1), with Z a length space. Let
A ⊂ BR+r(z̄) be a measurable subset. Then for all 0 < δ < 1, 1 ≤ N <∞
and β as in (6.14), there exists a finite collection of balls, B = {Brj (zj)},
such that

1
2δ
−Nr ≤ rj ≤ r , (6.16)

Brj1 (zj1), Brj2 (zj2) ≥ 1
2 min(rj1 , rj2) (j1 6= j2) , (6.17)

µ
(
A \ ∪jBrj (zi)

)
≤
(

(2δ)β+
1

2−2κ(1−(2δ)β)N

)
µ
(
BR+r(z̄)

)
.

(6.18)
Proof. Choose a maximal set of points, zj,0 ∈ A, of cardinality, n0 < ∞,
such that distinct points lie at distance at least r. Put F0 = A, E0 =
∪jB 1

4 r
(zj,0) and F1 = A \E0.



Vol. 9, 1999 DIFFERENTIABILITY OF LIPSCHITZ FUNCTIONS 473

Next, choose a maximal set of points, zj,1 ∈ F1, of cardinality, n1 <∞,
such that distinct points lie at distance at least δr. Put E1 = ∪jB 1

4 δr
(zj,1)

and F2=A\(E0∪E1). Proceeding by induction, we define sets, Ek, Fk+1, for
0 ≤ k ≤ N−1, with Ek−1=∪jB 1

4 δ
k−1r(zj,k−1) and Fk=A \ (E0 ∪ ··· ∪Ek−1).

By (0.1), we have

µ(FN ) ≤ µ(Fk) ≤ 2−2κµ(Ek) . (6.19)

The collection of balls, B = {B 1
4 δ
kr(zj,k−1)}, where 1 ≤ k ≤ N , 1 ≤ j ≤

nk−1, satisfies (6.16), (6.17). Since these balls are mutually disjoint, we get

µ
(
∪j,k B 1

4 δ
kr(zj,k−1)

)
≤ µ

(
BR+r(z̄)

)
. (6.20)

Thus, from (6.13) and the definition of FN , we obtain

µ
(
FN \ ∪j,kB 1

4 δ
kr(zj,k−1)

)
≤ (2δ)βµ

(
BR+r(z̄)

)
. (6.21)

In (6.19), we put k = 0, 1, . . . ,N − 1 and add the resulting inequalities.
Then by (6.17), (6.20), we get(

1− (2δ)β
)
Nµ(FN) ≤ 2−2κµ

(
BR+r(z̄)

)
. (6.22)

Relations (6.21), (6.22) imply (6.18). �

Remark 6.23. Note that given a λ-quasi-convex metric, Lemma 6.15 can
be used to provide coverings by balls which are defined with respect to the
canonically associated length space metric. With this remark, it is easy to
modify the statements and proofs of Lemmas 6.24, 6.30 below (and hence,
the proof of Theorem 6.5) so that they are valid in the quasi-convex case.

We now return to the context of Theorem 6.5.

Lemma 6.24. Let (Z,µ) satisfy (0.1). If f : BR(z̄) → R is Lipschitz,
then for all 1 > η,ψ, ξ, χ > 0, there exists 0 < rf = rf (η, ψ, ξ, χ,R, z̄), and
Zf = Zf (η, ψ, ξ, χ,R, z̄) ⊂ BR(z̄), such that

µ(Zf ) ≥ (1− η)µ(BR(z̄)) , (6.25)

and for all z ∈ Zf ,

−
∫
B3r(z)

∣∣Lip f(z)− Lip f(z)
∣∣pdµ < ψ (0 < r ≤ rf ) . (6.26)

Moreover, for all z1, z2 ∈ Br(z), such that z1, z2 > ξr,
|f(z1)− f(z2)|

z1, z2
< Lip f(z) + χ (0 < r ≤ rf ) . (6.27)

Proof. It follows from Lusin’s theorem that there exists r1 > 0, and
Z1 ⊂ BR(z̄), with µ(Z1) ≥

(
1− 1

4η
)
µ(BR(z̄)), such that for all z1, z2 ∈ Z1,

with z1, z2 ≤ r1, we have |Lip f(z1)− Lip f(z2)| < 1
4χ. Moreover, it follows
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from the definition of Lip f , that there exist 0 < r2 ≤ 1
2r1 and Z2 ⊂ Z1,

with µ(Z2) ≥
(
1 − 1

2η
)
µ(BR(z̄)), such that for all z ∈ Z2 and z̃, with

z, z̃ ≤ r2, we have
|f(z̃)− f(z)|

z̃, z
< Lip f(z) +

1
4
χ . (6.28)

Thus, if z1, z2 ∈ Z2 ∩Br2(z), with z ∈ Z2, then
|f(z1)− f(z2)|

z1, z2
< Lip f(z) +

1
2
χ . (6.29)

Let L denote the Lipschitz constant of f . We can assume 1
4χ < L. By

(0.1) and the Lebesgue differentiation theorem, there exists 0 < r3 ≤ r2
and Z3 ⊂ Z2, with µ(Z3) ≥

(
1− 3

4η
)
µ(BR(z̄)), such that for all z ∈ Z3 and

r ≤ r3, the set, Z3 ∩ Br3(z), is ξχ
8Lr-dense in Br(z). It follows easily that

(6.27) holds, for all z1, z2 ∈ Br(z).
Finally, by the Lebesgue differentiation theorem, there exists 0 < rf ≤ r3

and Zf ⊂ Z3, with µ(Zf ) ≥ (1−η)µ(BR(z̄)), such that for all z ∈ Z3, (6.26)
holds. This suffices to complete the proof. �

Let rf = rf (η, ψ, ξ, χ,R, z̄) be as in Lemma 6.24. From Lemma 6.24
together with Lemma 6.15, we obtain:
Lemma 6.30. Let (Z,µ) satisfy (0.1), with Z a length space. Let f :
BR(z̄) → R be a Lipschitz. Given η, ψ, ξ, χ > 0, there exists a finite
collection of mutually disjoint balls, {Brj (zj)}, with zj ∈ BR(z̄), rj ≤ 1,
for all j, such that

Bri(zj), Br`(z`) ≥ 1
2(rj + r`) (j 6= `) , (6.31)

µ
(
BR(z) \ ∪jBrj (zj)

)
< C(κ) η µ

(
BR(z̄)

)
, (6.32)

C(κ, η)rf ≤ rj ≤ rf , (6.33)(
−
∫
B3rj (zj)

|Lip f(z)− Lip f(zj)|p dµ
)1/p

< ψ . (6.34)

Moreover, for all zj and z1,j , z2,j ∈ Brj (zj), such that z1,j , z2,j > ξrj , we
have

|f(z1,j)− f(z2,j)|
z1,j , z2,j

< Lip f(zj) + χ . (6.35)

In addition to the results established so far, the following proof of Propo-
sition 6.2 depends on MacShane’s lemma; see (8.3).
Proof of Proposition 6.2. For each fixed η, ψ, ξ > 0 as in Lemma 6.30,
we will construct a function, f# : BR(z̄) → R. For i = 1, 2, . . . , we will
take η = ψ = χ = i−1, choose ξ = ξ(η) sufficiently small and set fi = f#.
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It will be clear that the resulting sequence of functions has the required
properties.

Fix η, ψ, ξ > 0. Let {Brj (zj)} be the covering provided by Lemma 6.30.
For each ball, Brj (zj), choose a maximal set of points, {wj,k}, such that if
k 6= k′, then wj,k and wj,k′ are at mutual distance at least 2ξrj .

For all j, k, define the function, f#, on the set, ∪j,kwj,k, by setting
f#(wj,k) = f(wj,k).

Next, for each j, on the ball, Brj (zj), define f# to be the canonical
extension given by (8.3), of the function, f#, on ∪kwj,k ⊂ Brj (zj).

Finally, define f# on the whole of Z to be the canonical extension given
by (8.3) (MacShane’s lemma) of the function, f#, on the set, ∪Brj (zj) ⊂ Z.

If we define the functions, fi, as above, then it is completely straight-
forward to check that these functions have the required properties. �

From Theorem 6.1, we can deduce the following corollary, which plays
a significant role in the proof of infinitesimal generalized linearity for our
generalization of Rademacher’s theorem; see Theorem 10.2.
Corollary 6.36. Let (Z,µ) satisfy (0.1), and (4.3), for some 1 < p <∞.
If f is Lipschitz, then for µ-a.e. z ∈ Z, we have existence of the limit,

Lip f(z) = Lip f(z)

= lim
r→0

sup
z∈∂Br(z)

|f(z)− f(z)|
z, z

.
(6.37)

Proof. As noted in Proposition 1.11, the function, Lip f , defined in (1.10),
is an upper gradient for f . Thus, the corollary follows from Theorem 6.1. �

As in Remark 2.29, in our next application of Theorem 6.1, we write
gf,p to indicate the possible dependence of a minimal upper gradient on the
choice of p.
Corollary 6.38. Let (Z,µ) satisfy (0.1), and (4.3), for some 1 < p <∞.
If f is locally in H1,p′ for some p′ ≥ p, then gf,p′ = Lip f . In particular, the
sets, Vα(f), of Theorem 4.38, can be chosen such that the conclusions of
that theorem hold, no matter which value, p′ ∈ [p,∞), is used in defining
the notion of asymptotic generalized linearity.

Proof. To see the second assertion, choose a countable dense subset {p′i} ⊂
[p,∞). It is clear that the sets, Uα, Vα(f), can be chosen such that the
assertions of Theorem 4.24 hold when the notion of asymptotic general-
ized linearity is defined relative to any of values, p′i, lying in this subset.
Given that, gf,p′ = gf,p, for all p′ ≥ p, our second assertion follows by a
straightforward continuity argument. �
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7 p-Harmonic Functions and the Dirichlet Problem

In this section, we define p-harmonic functions and prove some of their
basic properties.

In discussing existence of solutions to the Dirichlet problem, we first
consider the case in which U is bounded and f ∈ H1,p(U) is essentially
bounded. Assuming neither (0.1), nor (4.3), we show that for 1 < p <∞,
there is a bounded solution to the Dirichlet problem in the sense of the
relaxed topology; see Definition 7.3.

Given (0.1), (4.3), we show that a solution exists in the weak sense of
traces for arbitrary, U , f ∈ H1,p(U) and 1 < p < ∞. Here, we appeal to
Theorem 4.48.

We show in general that if b1,b2 are two solutions to the same relaxed
Dirchlet problem, then gb2−b1 ≡ 0. Thus, if the Dirichlet Poincaré in-
equality holds, the solution is unique; compare (7.15). Finally, we prove a
version of the maximum principle.

Definition 7.1. A function, b : U → R is p-harmonic if b |V is in
H1,p(V ), for every bounded open set, V ⊂ U , and for every k ∈ K(V ), the
function, b |V , satisfies

|gb+k|Lp ≥ |gb|Lp . (7.2)

Note that if b is p-harmonic, it follows that (7.2) actually holds for all

k̄ ∈
◦
H1,p (V ). Moreover, if (7.2) holds for some V , then it holds for all

V ′ ⊂ V . For A ⊂ H1,p(U), denote by Ã, the closure of A in the relaxed
topology. Clearly, Ã is closed in H1,p(U), for any A. Moreover, we have
Ā ⊂ Ã = Ã, where Ā denotes the closure of A in the usual (norm) topology
of H1,p.

Definition 7.3. Let f ∈ H1,p(U). A function, b : U → R is a relaxed
solution to the Dirichlet problem for f , if b is p-harmonic and b ∈ f + K̃.

In order to be certain that Definition 7.3 to be a reasonable one, we
must show that f̃ +K = f + K̃, for all f ∈ H1,p(U). In this case, it follows
directly, that infk∈K |gf+k|Lp = |gb|Lp and |gb|Lp ≤ |gb+k̃|Lp , for all k̃ ∈ K̃.
To this end (and as an aid to proving the existence of relaxed solutions to
the Dirichlet problem by a direct method) we will introduce an additional
notion.

Definition 7.4. Let fi ∈ H1,p(U), for all i. The sequence, {fi}, converges

to f in the very relaxed topology of H1,p, if fi
Lp−→ f and there exists a
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sequence of generalized upper gradients, gi for fi, such that gi
Lp−→ g, for

some g ∈ Lp.
For A ⊂ H1,p(U), denote by Â, the closure of A in the very relaxed

topology. Clearly, V̂ is a subspace, for any subspace, V ⊂ H1,p(U).

Lemma 7.5. For all A, we have Ã ⊂ Â.

Proof. This follows immediately from Proposition 2.13. �

Lemma 7.6. If f ∈ H1,p(U), then f̂ + V = f + V̂.

Proof. Let u ∈ f̂ + V. Let f + fi
Lp−→ u, gi

Lp−→ g, where gi is a generalized
upper gradient for f + fi. Since, fi = f + fi − f , it follows that gi + gf is
a generalized upper gradient for fi. From this, we get f̂ + V ⊂ f + V̂ and
the opposite inclusion follows similarly. �

Proposition 7.7. The equality, f̂ +K = f̃ +K holds. In particular,
f̃ +K = f + K̃ is a closed affine subspace of H1,p(U).

Proof. By Lemmas 7.5, 7.6, it suffices to show that f̂ +K ⊂ f̃ +K. The
proof is similar to that of Proposition 2.17. If u ∈ f̂ +K, there exists

ki ∈ K, such that f + ki
Lp−→ u, and generalized upper gradients, gi, for

f + ki, such that gi
Lp−→ g, for some g ∈ Lp.

Let η > 0 and and let φ : U → [0, 1] be a Lipschitz function with
suppφ ⊂ U , such that φ |Uη ≡ 1. The function, ui,η = φu+(1−φ)(f +ki),

lies in f + K and ui,η
Lp−→ u, as η → 0. Also, as follows easily from

Lemma 1.7, for all ε > 0, the function, gi,ε,η = Lip (1− φ)(|u− (f + ki)|+ ε)
+(1−φ+ε)(gu+gi)+gu is a generalized upper gradient for ui,η. By choosing

suitable diagonal sequences, ui(η),η, gi(η),ε(i(η),η),η, such that ui(η),η
Lp−→ u,

gi(η),ε(i(η),η),η
Lp−→ gu, as η → 0, the proof is completed. �

Theorem 7.8 (Existence of relaxed solutions). For all 1 < p < ∞ and
bounded open sets, U and essentially bounded f ∈ H1,p(U), the Dirichlet
problem for f has a relaxed solution, f+k̃, such that ess sup f+k̃ ≤ ess sup f
and ess inf f + k̃ ≥ ess inf f .

Proof. Let {ki} be a sequence inK such that |gf+ki |Lp → lim infk∈K |gf+k|Lp .
Since the set, f +K, is convex, it follows from the uniform convexity of Lp,

for 1 < p <∞ that gf+ki
Lp−→ g, for some g ∈ Lp. Without loss of generality,
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we can assume
|gf+ki − g|Lp ≤ 2−i . (7.9)

Since truncation does not increase the size of the generalized upper gra-
dient, without loss of generality, we can assume that the functions, f + ki
are uniformly bounded in absolute value. Since U is bounded, it follows
from the monotone convergence theorem that for fixed i, the sequence,
fi,j = {min(f + ki, . . . , f + kj)}, converges in Lp to a function, fi,∞. Simi-
larly, the increasing sequence, {fi,∞} converges in Lp to a function, b.

It follows from (7.9) and Corollary 2.26, that a for a suitably chosen

diagonal sequence, fi,j(i), we have, fi,j(i)
Lp−→ b , gfi,j(i)

Lp−→ g. Thus, by
Proposition 7.7, together with the discussion following Definition 7.3, we
conclude that b is a relaxed solution to the Dirichlet problem for f . �

Definition 7.10. Given f ∈ H1,p(U), the function, b ∈ H1,p(U), is
a solution to the Dirichlet problem for f in the weak sense of traces, if
b = f + k is p-harmonic and k ∈

◦
H1,p (U).

Remark 7.11. Set ∂U = U \ U . If U is bounded and u : ∂U → R is
Lipschitz, then there exists a Lipschitz extension of f to U ; see (8.2), (8.3).
Since µ is finite on bounded sets, it follows that such an extension is in
H1,p. Since µ is Borel regular, we can use an exhaustion of U by closed
bounded subsets, together with (8.2) or (8.3), to show that any two such

extensions differ by an element of
◦
H1,p. Thus, there is a well defined notion

of a solution to the Dirichlet problem with boundary values u (in the weak
sense of traces.)

Theorem 7.12 (Existence of solutions in the weak sense of traces). Let
(Z,µ) satisfy (0.1), and (4.3), for some 1 < p <∞. Then for f ∈ H1,p(U),
the Dirichlet problem for f has a solution in the weak sense of traces.

Proof. Let f+ki be as the proof of Theorem 7.8. By applying Theorem 4.50,
we can assume that this sequence converges in H1,p(U). This suffices to
complete the proof. �

Remark 7.13. The previous argument should be compared to that of
[HeKM].

Theorem 7.14 (Uniqueness). Let U be bounded and let f ∈ H1,p(U),
where 1 < p <∞.

i) If b1,b2, are relaxed solutions to the Dirichlet problem for f , then
gb1−b2(z) = 0, for µ-a.e. z.
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ii) Given in addition, the Dirichlet Poincaré inequality,∫
U
|k|p dµ ≤ τp

∫
U

(gk)p dµ (k ∈ K) , (7.15)

then solutions to the Dirichlet problem for f are unique.

Proof. Assume that b1,b2 are two relaxed solutions corresponding to the
same f ∈ H1,p(U). Since, U is bounded, it follows from the strict convexity
of Lp, that gb1 = gb2 , µ-a.e.

The function, b = max(b1,b2), satisfies b − f ∈ K̃. Thus, by Corol-
lary 2.26, b is a relaxed solution to the Dirichlet problem for f as well.

Let V ⊂ U , denote the subset of points, z, such that b2(z) < b(z), and
gb(z) > 0.

We claim that µ(V ) = 0. If not, then for some c ∈ (−∞,∞), the subset,
Wc ⊂ V , on which b2 < c < b has positive measure. Let b̂ : U → R be
defined by

b̂(z) =


b(z) if b ≤ c ,
c if b2 < c < b ,
b2(z) if c ≤ b2 .

(7.16)

It is easy to see that b̂ − f ∈ K̃. Since gb > 0 on Wc and µ(Wc) > 0, it
follows from Corollaries 2.25, 2.26, that |gb̂|Lp < |gb| = |gb2 | = 0. This
contradicts the assumption that b is a relaxed solution to the Dirichlet
problem for f .

Thus, for µ-a.e. z ∈ U , we have either b1(z) = b2(z), or gb1(z) =
gb2(z) = 0. By Proposition 2.22, we get gb1−b2(z) = 0, for µ-a.e. z such that
b1(z) = b2(z). Since, gb1−b2(z) ≤ gb1 + gb2(z), we also get gb1−b2(z) = 0,
for µ-a.e. z such that gb1(z) = gb2(z) = 0. This suffices to complete the
proof. �

Theorem 7.17 (Maximum principle). Let U be a bounded open set
and let 1 < p < ∞. Let u1, u2 ∈ H1,p(U) satisfy u1 ≤ u2, and let b1,b2
be corresponding relaxed solutions to the Dirichlet problems. Then either
ess sup b2−b1 ≥ 0 or the solution to at least one of these Dirichlet problems
is not unique and gb1(z) = gb2(z) = 0, for µ-a.e. z such that b1(z) > b2(z).
In particular, if (7.15) holds, then ess sup b2 − b1 ≥ 0.

Proof. Since the solutions for the Dirichlet problem with boundary values,
u1 − c, are precisely those of the form b1 − c, where b1 is a solution with
boundary values, u1, we can assume without loss of generality that u1 < u2.
If the set of points, z, such that b1(z) > b2(z) has positive measure, then at
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least one of the functions, min(b1,b2), max(b1,b2) provides a solution to at
least one of our Dirichlet problems which differs on a set of positive measure
from the corresponding solution, b1, respectively, b2. The remainder of
our assertions follow directly from the arguments given in the proof of
Theorem 7.14. �

Remark 7.18. If in particular, the Poincaré inequality, (4.3), holds, then
those conclusions of Theorems 7.14, 7.17 which obtain in case the Dirichlet
Poincaré inequality holds, are valid for balls whose closures are properly
contained in Z; see (4.5).

Remark 7.19. If (0.1), (4.3), (7.15), hold, then the previous discussion
can be adapted so as to apply to p-harmonic functions defined with respect
to an L∞ riemannian metric as in section 4, or more generally an L∞ Finsler
metric. By the latter, we mean that the unit sphere in the cotangent
space is smooth and strictly convex. For such metrics, the discussion of
[HeKM] shows that p-harmonic functions, b, are α-Hölder continuous, for
any 1 < p < ∞ (where α = α(κ, τ, λ, p)); compare Remark 4.60. In this
connection we mention that the assumption that unit sphere is smooth and
strictly convex enters in deriving Caccioppoli estimates on the function,
1/b (whereas for the function b itself, it can be avoided).

8 Generalized Linear Functions

In this section, we show that given (0.1), (4.3), a generalized linear func-
tion, `, has a canonical representation in terms of its boundary values; see
Theorem 8.5. From this representation, it follows in particular, that any
point lies on some geodesic line, γ, such that `(γ(s)) = Lip ` · s, where s
denotes arclength. Thus, if the gradient, ∇` were actually defined, then γ
would be an integral curve of ∇`.

Fix 1 < p <∞.
Definition 8.1. A Lipschitz function, `, is generalized linear if

i) Either ` ≡ 0 or range ` = (−∞,∞).
ii) ` is p-harmonic.
iii) g` ≡ c, for some c.

The terminology notwithstanding, we can not assert in general that a
linear combination of linear functions is again a linear function. None-the-
less, in section 11, spaces of generalized linear functions will arise naturally.
If (0.1), (4.3) hold, then by Lemma 4.37, there is a definite bound on the
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dimension of any space of functions all of whose elements are generalized
linear.

We will need some easily verified, though quite basic, general facts;
compare Lemma 5.16.

Let Lip f denote the Lipschitz constant of f .
If Z is a metric space and f : A → R, is Lipschitz, for some A ⊂ Z,

then the function, f∗, defined by
f∗(z) = inf

z′∈A

(
f(z′) + Lip f · z, z′

)
, (8.2)

satisfies f∗ |A = f |A and Lip f∗ = Lip f .
Similarly, the function, f∗, defined by

f∗(z) = sup
z′∈A

(
f(z′)− Lip f · z, z′

)
, (8.3)

satisfies f∗ |A = f |A and Lip f∗ = Lip f .
The above statements are sometimes referred to as ‘MacShane’s Lemma’.
If f̃ is any function satisfying, f̃ |A = f |A and Lip f̃ = Lip f , then it

is easy to verify that
f∗ ≤ f̃ ≤ f∗ . (8.4)

Theorem 8.5. Let (Z,µ) satisfy (0.1), and (4.3), for some 1 < p < ∞,
with Z complete. Let U ⊂ Br(z) ( Z, and let ` : U → R satisfy ii),
iii), of Definition 8.1. Let `∗, `∗ be as (8.2), (8.3), where A = ∂U . Then
`∗ = ` = `∗.

Proof. Since the functions, `∗, `∗, ` are all solutions to the Dirichlet prob-
lem the claim follows from Theorem 7.14 and Remark 7.18, together with
Theorem 6.1 �

Theorem 8.6. Let (Z,µ) satisfy (0.1), and (4.3), for some 1 < p < ∞,
with Z complete. Let Z \ Bs(z) 6= ∅ and ` : Bs(z) → R satisfy ii), iii),
of Definition 8.1. Let `∗, `∗ be as (8.2), (8.3), where A = ∂Bs(z). Then
`∗ = ` = `∗ and for all z ∈ Bs(z), there exist z∗, z∗ ∈ ∂Bs(z) such that

`(z∗) = `(z)− Lip ` · z, z′ , (8.7)
and

`(z∗) = `(z) + Lip ` · z, z′ . (8.8)
Also, there exist minimal geodesic segment, γ : [`(z)−`(z∗), `(z∗)−`(z)]→
Bs(z), with γ(`(z)− `(z∗)) = z∗, γ(0) = z, γ(`(z∗)− `(z)) = z∗, such that

`(γ(s)) = `(z) + s . (8.9)
If Z is a length space, then there exists γ as above, for any z∗, z∗ satisfying
(8.7), (8.8).
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Proof. Relations (8.7), (8.8) follow immediately from using the relation
`∗ = `∗ = `, together with (8.2), (8.3).

If z∗, z∗ are points satisfying (8.7), (8.8) for which there exist minimal
segments, γ∗ from z∗ to z, and γ∗, from z to z∗, then it is easy to check
that (when suitably parameterized) γ = γ∗∪γ∗ has the required properties.
Thus, γ as above exists for any z∗, z∗, if Z is a length space.

It will suffice to show the existence of z∗ for which there exists γ∗ as
above; the case of z∗ is similar. Fix 1 < N < ∞ and put sN = (`(z∗) −
`(z))/N . Let z∗,1,N ∈ ∂BsN (z) satisfy (8.8). Proceeding by induction, we
obtain points, z∗,i,N ∈ ∂BsN (z∗,i−1,N ), for all 1 ≤ i ≤ N . It is clear that
z∗ = z∗,N,N satisfies (8.8). If we let N → ∞, then by an obvious limiting
argument, we obtain the required point, z∗ and geodesic segment γ∗. �

Theorem 8.6 has the following direct implication. Let f be Lipschitz.
We say a curve, c : [a, b] → Z, is an integral curve for gf , if f ′(c(t)) =
g2
f (c(t)). Recall that a line is a geodesic, γ : (−∞,∞) → Z, each finite

segment of which is minimal.

Theorem 8.10. Let (Z,µ) satisfy (0.1), and (4.3), for some 1 < p <∞,
with Z complete, noncompact. Let ` : Z → R satisfy ii), iii) of Defini-
tion 8.1. Then ` is generalized linear; equivalently, ` ≡ 0, or range(f) =
(−∞,∞). Moreover, for all z ∈ Z, there exists a line γ, parameterized
proportional to arclength, with γ(0) = z, which is an integral curve for
g` = Lip `.

Proof. Given z ∈ Z, let z∗,s, z∗,s denote points on ∂Bs(z) such that (8.9)
hold and let γs denote the corresponding minimal geodesic segment from
z∗,s, γ∗,s. By a standard compactness argument, there exists a sequence,
si →∞, such that (when suitably parameterized proportional to arclength)
γsi converges uniformly on compact subsets to some curve γ. It is easy to
check that γ is the required integral curve. �

Recall γ : [0,∞) → Z, is called a ray, if each finite segment of γ is
minimal. Put bγ,s(z) = z, γ(s) − s, where as usual, s denotes arclength.
By a standard argument based on the triangle inequality, on any compact
subset, the functions bγ,s are uniformly bounded below (independent of s).
In addition, bγ,s2 ≤ bγ,s1 , if s1 ≤ s2. The Busemann function associated to
γ is the function, bγ(z) = lims→∞ bγ,s(z).

If γ : (−∞,∞)→Z is a line, let γ=γ | [0,∞) and define −γ : [0,∞)→Z,
by −γ(s) = γ(−s). As in the proofs of Theorems 8.5, 8.6, 8.10, from
MacShane’s lemma, we immediately obtain:
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Theorem 8.11. Let the assumptions be as in Theorem 8.10. Let γ
(whose existence is guaranteed by Theorem 8.10) be a line with γ(0) = z,
which is an integral curve for gf . Then

`(z)− Lip ` · bγ ≤ ` ≤ `(z) + Lip ` · b−γ . (8.12)
In particular, if Z = Rn, then `(z)− Lip ` · bγ = ` = `(z) + Lip ` · b−γ , and
in this case, the generalized linear function, `, is linear.

Remark 8.13. Theorem 8.11 should be compared to the splitting theorem
in riemannian geometry; see [ChGr].

Remark 8.14. If one assumes that generalized linear functions on Rn

are of class, C2, then one can see that such functions are linear by apply-
ing Bochner’s formula. However, the argument which proves Theorem 8.11,
does not rely on any such a priori assumptions concerning the differentiabil-
ity of generalized linear functions. Note that such an argument is required,
if we are to legitimately assert that our results provide a self contained
proof of the classical Rademacher theorem for Lipschitz functions on Rn.

We close this section with some simple quantitative observations which
hold in case Z is a length space (satisfying no additional conditions). These
are used in section 16.

Let A ⊂ Z and assume that closed bounded subsets of A are compact.
Given z ∈ Z, let the supremum and infimum in (8.2), (8.3) be realized
by z′ = z∗, z′ = z∗, respectively. Let γ∗, γ∗ be minimal geodesic segments
parameterized by arclength from z to z∗ respectively, z to z∗. Then for
0 ≤ Lip f · s ≤ f∗(z)− f∗(z∗), respectively, 0 ≤ Lip f · s ≤ f∗(z∗)− f∗(z),
we have

f∗(γ∗(s)) = f∗(z) + Lip f · s . (8.15)
respectively,

f∗(γ∗(s)) = f∗(z)− Lip f · s , (8.16)
In addition, for fixed z, the distance from z to the level surfaces,

(f∗)−1(f∗(z) − Lip f · s), (f∗)−1(f∗(z) + Lip f · s), is in each case, s. The
points γ∗(s), γ∗(s) are closest points on their level surfaces to the point, z.
Moreover, if in (8.15), (8.16), these points are replaced by any other such
closest points, then the relations in (8.15), (8.16) continue to hold.

Under the same assumptions, the next lemma is now any easy exercise;
the proof will be omitted.
Lemma 8.17. Let f : Z → R satisfy

f∗ ≤ f∗ + Lip f · ψ . (8.18)
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If 0 ≤ f(z)−t ≤ Lip f(z,A−ψ), respectively 0 ≤ t−f(z) ≤ Lip f(z,A−ψ),
then ∣∣f(z)− t− Lip f · z, f−1(t))

∣∣ ≤ 2Lip f · ψ , (8.19)

respectively, ∣∣t− f(z)− Lip f · z, f−1(t))
∣∣ ≤ 2Lip f · ψ . (8.20)

9 Persistence of the Poincaré Inequality Under Limits

Let {(Zi, zi, ρi)} be a sequence of length spaces. If {(Zi, zi, ρi)} converges to

(Z, z, ρ) in the Gromov-Hausdorff sense, we write (Zi, zi, ρi)
dGH−−→ (Z, z, ρ);

see [GroLaPa] for the definition and basic facts concerning Gromov-Haus-
dorff convergence.

Assume in addition that the metrics, ρi, are λ-quasi-convex, for some
λ <∞. Assume in addition, that for the sequence of canonically associated
length space metrics, ρ0,i, we have (Zi, zi, ρ0,i)

dGH−−→ (Z, z, ρ̂) for some to
some length space metric, ρ̂, on Z. In this case, which can always be
obtained by passing to a suitable subsequence, ρ is λ-quasi-convex, ρ̂ is
λ-quasi-isometric to ρ and ρ0 ≤ ρ̂.

In the above situation, if µi, µ are Borel regular measures on Zi, Z, we
say that {(Zi, zi, ρi, µi)} converges to (Z, z, ρ, µ) in the measured Gromov-
Hausdorff sense, if in addition, for all zi → z and all r > 0, we have
µi(B0

r (zi)) → µ(B̂r(z)), where the balls, B0
r (zi), B̂r(z), are defined with

respect to the metrics, ρ0,i, ρ̂,

In this case, we write (Zi, zi, ρi, µi)
dGH−−→ (Z, z, ρ, µ).

The above notion of convergence of measures (used in [ChCo2] and
somewhat stronger than that of [Fu]) is an appropriate one for our present
discussion. The reason for bringing in the metrics ρ0,i, ρ̂, stems from
Proposition 6.12. To emphasize this point and for the purposes of section
10, we state the following result.

Given a sequence, {(Zi, zi, di, µi)}, put µ
i
( · ) = µi( · )/µi(B1(zi)). The

measure, µ in Theorem 9.1 below, is called a renormalized limit measure.

Theorem 9.1. Given a sequence, {(Zi, zi, di, µi)} where the Zi are all
λ-quasi-convex, for some λ < ∞, and µi satisfies (0.1), with constant, κ,
independent of i, there exists (Z, z, d, µ), with µ a Radon measure satis-

fying (0.1), such that (Zj , zj , dj , µj)
dGH−−→ (Z, z, d, µ), for some sequence,

{(Zj , zj , dj , µj)}.
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Proof. As a consequence of Proposition 6.12, this follows from the argument
of section 2 of [ChCo2]. �

For the remainder of this section we will assume that (Z,µ) satisfies
(0.1), and (4.3), for some 1 ≤ p < ∞. Moreover, until the very end (with
no essential loss of generality) we assume that Z is a length space.

Recall that if (0.1) holds, and (4.3) holds for some 1 ≤ p < ∞, and
constant τp, then (4.3) also holds for all p′ > p. The best constant, τp′ , can
be bounded above in terms of p, p′, κ, τp; see section 4.

By using the results of section 5, we will show that for p′ > p, a strength-
ened and more stable form of the Poincaré inequality actually holds (with a
constant which blows up as p′ → p). Also, from the discussion of section 5,
it is easy to see that the strengthened form of the inequality passes to
Gromov-Hausdorff limits. Thus, on such a limit space, the Poincaré in-
equality of type (1, p′) holds. At this juncture, from the argument given
in the proof of Lemma 10.7 (in what is essentially the same context) we
can conclude that the constant in the type (1, p′) Poincaré inequality on
the limit space is bounded below by the lim inf of the best constants in the
type (1, p) inequality for the spaces in the approximating sequence.

Fix 1 ≤ p <∞. Let g ∈ Lp′ be a generalized upper gradient for f ∈ Lp′ ,
with p′ > p. Then

−
∫
Br(z)

|f |p′ dµ ≤ 2p
′ −
∫
Br(z)

|f − fz,r|p
′
+ 2p

′ |fz,r|p
′
. (9.2)

For fixed z1 ∈ Br(z), take f(z2) = Fg(z1, z2), where Fg(z1, z2) is as in
section 5. Then

−
∫
Br(z)

Fg(z1, z2)p
′
dµ ≤ 2p

′+κ −
∫
B2r(z1)

∣∣Fg(z1, z2)− (Fg(z1, z2))z,r
∣∣p′ dµ

+ 2p
′+κ((Fg(z1, z2))z,r

)p′
. (9.3)

If we apply (5.28), integrate with respect to z1 over B3r(z) and apply the
maximal function inequality for the space, Lp′/p, we get(

−
∫
Br(z)×Br(z)

Fg(z1, z2)p
′
dµ×dµ

)p′
≤ cp′r((gp

′
)z,3r)p

′
, (9.4)

where cp′ = c(κ, τp′ , p).
It follows from (5.13), that (9.4) implies the existence of a weak Poincaré

inequality of type (1, p′), with constant, cp′ . Moreover, we have:
Theorem 9.5. Let Z be a length space for which closed balls are compact
and let {(Zi, zi, µi)} converge to (Z, z, µ) in the measured pointed Gromov-
Hausdorff sense, where Zi is a length space for all i. If for 1 ≤ p < p′ <∞,
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(0.1), (9.4) hold for all µi, with constants, κ, cp′ , independent of i, then
(0.1), (9.4) hold for µ, κ, cp′ .

Proof. By an obvious approximation argument based on Lemma 5.18, the
proof can be reduced to the case in which the function, g is continuous ,
(and strictly positive) in which case the assertion is easily verified.

Specifically, from the assumption that Z is a complete length space
and g is bounded we find a uniform upper bound on Fg(z1, z2), for all
(z1, z2) ∈ Br(z). Then, since g has a positive lower bound, we conclude
that the infimum in the definition of Fg(z1, z2) is realized by some rectifiable
curve, c, of at most a definite length. This curve can be approximated as
well as we like by a rectifiable curve, ci ⊂ Zi (whose length is as close as
we like to that of c) provided i is sufficiently large. Similarly, since the
function, g is continuous, it can be approximated as well as we like by a
function, gi on Zi. From this, the proof is easily completed. �

Now we can show the corresponding result for the Poincaré inequality.
Note that if (0.1), and (4.3), for some 1 < p < ∞, hold for all µi, with
constants, κ, τp independent of i, then for any p′ > p, there exists some
smallest constant, τp′ <∞ such that (0.1), (4.3) hold with constants κ, τp′ ,
for all with µi; see section 5. The value of τp′ can be bounded from above
in terms of κ, τp, p, p′.

Theorem 9.6. Let Z be a metric space for which closed balls are compact
and let {(Zi, zi, µi)} converge to (Z, z, µ) in the measured pointed Gromov-
Hausdorff sense. If (0.1) and (4.3), for some 1 < p < ∞, hold for all µi,
with constants, κ, τp independent of i, then for p′ > p, (0.1), (4.3) hold
for µ, with constants, κ, τp′ .

Proof. It follows from Theorem 9.5 that (Z,µ), with metric, ρ̂ (as defined at
the beginning of this section) satisfies a Poincaré inequality of type (1, p′)
(with some definite constant which might not be optimal). Since the limit
metric ρ is λ-quasi-isometric to ρ̂, this holds for the metric, ρ, on (Z,µ) as
well. However, it follows from Lemma 10.7 of the next section, that if (4.3)
holds for some constant, then it actually holds with constant τp′ . �

10 Infinitesimal Generalized Linearity

In this section we complete our generalization of Rademacher’s theorem on
the almost everywhere differentiability of Lipschitz functions on Euclidean
spaces, under the assumptions that (Z,µ) satisfies the doubling condition,
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(0.1) and the Poincaré inequality, (4.3). Specifically, we show that a Lips-
chitz function, f is infinitesimally generalized linear at z, for µ-a.e. z ∈ Z;
see Definition 10.1 and Theorem 10.2.

When specialized to the case of Euclidean space, Rn, Theorem 10.2,
together with Theorem 4.38 (which contains the relative uniqueness state-
ment) immediately yield the classical theorem of Rademacher on the almost
everywhere differentiability of Lipschitz functions on Euclidean space.

The condition in Definition 10.1 below could be further strengthened by
requiring that for a given function, f , and tangent cone, Zz, any two limit
functions differ by composition with an isometry of Zz. The present for-
mulation corresponds to what we are able to prove (and suffices to recover
the classical Rademacher theorem).

We begin with some preliminaries.
The basic facts concerning tangent cones require only (0.1) and the as-

sumption that Z is proper, i.e. that closed balls of finite radius are compact.
Note that in a metric space which carries a nontrivial doubling measure,
closed balls of finite radius are totally bounded. Hence, if complete, such a
space is proper.

Recall that a tangent cone, Zz, is the pointed Gromov-Hausdorff limit,
(Zz, z∞, d∞), of some sequence, {(Z, z, r−1

i d)}, where ri → 0. By Gro-
mov’s compactness theorem, in the presence of (0.1), tangent cones ex-
ist for all z ∈ Z (but need not be unique). From now on, we consider
tangent cones together with a choice of renormalized limit measure, i.e.
(Z, z, r−1

i d, µ
i
) dGH−−→ (Zz, z∞, d∞, µ∞), for some sequence ri → 0. By The-

orem 9.1, such renormalized limit measures exist (but need not be unique).
Sometimes we suppress the measure, µ∞ and just write Zz.

Let say dGH((Z, z), (Ẑ, µ̂)) < ε and fix a Gromov-Hausdorff approxi-
mation ψ : Z → Ẑ. For z ∈ Z, ẑ ∈ Ẑ, we put z, ẑ = ψz, ẑ. For continuous
functions, f, f̂ , we put f, f̂ = |f − f̂ ◦ψ|L∞ . Below, this will be understood
without mention of the particular choice of Gromov-Hausdorff approxima-
tion, ψ.

Definition 10.1. The function, f , is infinitesimally generalized lin-
ear at z ∈ Z, if z is a Lebesgue point of Lip f and if for every tangent
cone, (Zz, µ∞), every sequence, ri → 0, such that (Z, z, r−1

i d, µ
i
) dGH−−→

(Zz, z∞, d∞, µ∞), and fri,z → f0,z, the function f0,z is generalized linear.

Theorem 10.2 (Infinitesimal generalized linearity; Rademacher 3). Let
(Z,µ) satisfy (0.1), and (4.3), for some 1 < p < ∞. Then, for all p′ > p,
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a Lipschitz function, f : Z → R, is infinitesimally generalized linear at z
for µ-a.e. z ∈ Z. In particular, at such a point, f0,z, has the properties set
forth in Theorem 8.5. Moreover, Lip f0,z ≡ Lip f(z), is independent of the
particular function f0,z and tangent cone Zz.

Proof. By Theorem 6.1, we have gf = Lip f . Moreover, by Theorem 9.6,
relation (4.3) holds with some definite constant (which, a priori, might
not be optimal) on any tangent cone (Zz, µ∞), for all p′ > p; compare
the proof of Theorem 9.6. Thus, the upper gradient energy coincides with
the Dirichlet energy on any (Zz, µ∞) as well. The fact that we can work
with the Dirichlet energy, |Lip f |pp, plays an essential role throughout our
argument. Indeed, the Poincaré inequality only enters the proof indirectly
(via Theorem 9.6, via Theorems 5.1, 6.1 and their consequence Corollary
6.36, and finally, via Theorem 4.24).

We must show (see section 8) that for µ-a.e. z, we have

i) f0,z ≡ 0 or rangef0,z = (−∞,∞),
ii) f0,z is p-harmonic, for all p′ > p,
iii) Lip f0,z ≡ Lip f(z), for all Zz and all f0,z.

As indicated in the (proof of) Corollary 6.38, we can actually restrict
attention to a fixed value p′ ∈ (p,∞).

By Corollary 6.36, we have for f Lipschitz, Lip f = Lip f . This will
enable us to deduce iii); see Lemma 10.3.

Once ii) has also been established, i) is a direct consequence of Theo-
rem 8.5; see also Corollary 8.6.

The main point is to show ii), which is formally implied by (10.6). Most
of our work goes into proving this relation.

The proof of the following Lemma 10.3 is virtually identical to that of
Lemma 6.24. Thus, the proof of Lemma 10.3 will be omitted; compare also
the proof of Proposition 4.26.

Lemma 10.3. Let (Z,µ) satisfy (0.1). Let f be Lipschitz and assume that
for µ-a.e. z ∈ Z, (6.37) holds. Then for all ξ, χ > 0 and µ-a.e. z ∈ Z, there
exists sf = sf (z, ξ, χ), such that for 0 < r < sf and all z1, z2,∈ Br(z) with
z1, z2 ≥ ξr, ∣∣f(z1)− f(z2)

∣∣ < Lip f(z) · z1, z2 + χ . (10.4)

Moreover, for all such z1, there exists z2 ∈ B2r(z) with z1, z2 ≥ ξr, such
that ∣∣f(z1)− f(z2)

∣∣ > Lip f(z) · z1, z2 − χ . (10.5)
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Let z be as in Lemma 10.3 and z∞ ∈ Zz, for some Zz. From the
definition of Lip f0,z(z∞), together with Lemma 10.3, it follows that iii)
above holds. In fact, it already follows that for all z∞ ∈ Zz, r > 0, there
exists z′∞ ∈ Zz, such that z∞, z′∞ = r and |f(z′∞)− f(z∞)| = Lip f0,z · r.

To complete the proof, we must show that ii) above holds.
Let F∞ : BR(z∞)→ R be a Lipschitz function with the same boundary

values as f0,z∞ . We can assume without loss of generality that f is asymp-
totically generalized linear at z. Under this assumption, we will show

lim sup
i

(
−
∫
BR(z)

(Lip fri,z)
p dµi

)1/p

≤
(
−
∫
BR(z∞)

(LipF∞)p dµ∞

)1/p

.
(10.6)

Claim: The inequality, (10.6), implies ii).

Proof of claim. Note that by iii), it suffices to assume that Lip f0,z ≡
Lip f(z). The condition of being asymptotically generalized linear implies
in particular that z is a Lebesgue point of Lip f = Lip frj ,z (which is all
that we require for this part of the argument). It follows that the left-hand
side of (10.6) is equal to Lip f(z). Moreover, we have Lip f(z) ≡ Lip f0,z,
and the lim sup on the left-hand side of (10.6) can be replaced by lim. In
view of Theorem 4.24 (which enables us to restrict attention to the case in
which F∞ is Lipschitz) it follows that (10.6) implies ii).

Contrary to what was needed above, in establishing (10.6), we must (of
course) use the assumption that f is asymptotically p-harmonic at z. The
idea is to show that given a comparison function, F∞, we can construct
an approximating sequence of functions on the corresponding sequence of
(rescaled) balls, Bri(z), such that the Dirichlet energies of these functions
converge to the Dirichlet energy of F∞. Then, the fact that f is asymptot-
ically p-harmonic at z, yields the desired conclusion.

We need the following general result (and will work in this same degree
of generality until the very end of the proof).

From now on, we denote by Ψ(ε1, ε2, . . . , δ1, δ2, . . . ), a nonnegative func-
tion of ε1, ε2, . . . depending only on the specified auxiliary parameters,
δ1, δ2, . . . , and possibly on additional specified quantities like the function,
rf , such that Ψ → 0, if εi → 0 for all i, while the specified auxiliary
parameters and quantities remain fixed.

Throughout the remainder of this section, we will assume that all balls
of radius 1 centered at the base point have measure 1. This is just a conve-
nient normalization which plays no essential role; compare the definition of
renormalized limit measures given in section 9. To simplify the exposition
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slightly, we will just give the proof of Lemma 10.7 in the case in which Z is
a length space. The extension to the general case is essentially trivial; see
Remarks 6.4, 6.23.

Lemma 10.7. Let (Z,µ) satisfy (0.1), with Z quasi-convex. Let f :
BR(z̄)→ R be Lipschitz, with

Lip f ≤ L|f |Lp . (10.8)

Let dGH((Z, z̄, µ), (Ẑ, ˆ̄z, µ̂)) < ε and assume that (0.1) holds for (Ẑ, ˆ̄z, µ̂).
Then there is a Lipschitz function f̂ : BR(ˆ̄z) → R, such that for Ψ =
Ψ(ε|R,κ,L, rf ),

f, f̂ < Ψ|f |Lp , (10.9)∣∣|f̂ |Lp − |f |Lp∣∣+ Lip f̂ < (L+ Ψ)|f |Lp , (10.10)(∫
BR(ˆ̄z)

(Lip f̂)p dµ̂
)1/p

<

((∫
BR(z̄)

(Lip f)p dµ
)1/p

+ Ψ
)
|f |Lp .

(10.11)

Proof. By scaling, we can assume |f |Lp = 1. Fix η, ψ, ξ > 0, as in
Lemma 6.30 and let {Brj (zj)}, {wj,k}, f#, be as in that lemma.

Let ẑj ∈ Ẑ, ŵj,k ∈ Ẑ, satisfy zj , ẑj < ε, wj,k, ŵj,k < ε. Thus, ŵj,k ∈
Brj+2ε(ẑj).

We now define a function, f̂ : Ẑ → R which corresponds to the function,
f# : Z → R of Lemma 6.30. In the trivial case, (Z,µ) = (Ẑ, µ̂), we have
f# = f̂ .

Thus, for all j, k, define the function, f̂ , on ∪j,kŵj,k, by setting f̂(ŵj,k) =
f(wj,k).

Next, for each j, define f̂ to be the canonical extension given by (8.3),
of the function, f̂ , on ∪kŵj,k ⊂ Brj+2ε(ẑj).

Finally, define define f̂ on the whole of Ẑ to be the canonical extension
given by (8.3), of the function, f̂ on ∪Brj+2ε(ẑj) ⊂ Ẑ.

Since the verification of (10.9)–(10.11) is essentially routine, we will only
treat (10.11) in detail.

Note that on each ball, Brj (zj), we have Lip f# ≤ L. Then by (6.31),
we get Lip f# ≤ L+ Ψ(ξ|κ,L, η), on Z. So by (6.32), we have(∫

BR(z̄)\∪jBrj (zj)
(Lip f#)p dµ

)1/p

<
(
L+ Ψ(ξ|κ,L, η)

)(
C(κ)η

)1/p
.

(10.12)
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On the other hand, by (6.34), (6.35), we get(∫
∪jBrj (zj)

(Lip f#)p dµ
)1/p

<

(∫
∪jBrj (zj)

(Lip f)p dµ
)1/p

+ Ψ(ψ,χ|κ,L) .
(10.13)

Similarly, using (6.33), we obtain(∫
BR(ˆ̄z)\∪jBrj (ẑj)

(Lip f̂)pdµ̂
)1/p

<
(
L+ Ψ(ξ|κ,L, η) + Ψ(ε|κ,  L, η, ξ, χ, ψ, rf )

)
×
(
C(κ)(η + Ψ(ε|κ,L, η, ξ, χ, ψ, rf ))

)1/p
, (10.14)

and(∫
∪jBrj (ẑj)

(Lip f̂)pdµ̂
)1/p

<

(∫
∪jBrj (zj)

(Lip f#)p dµ
)1/p

+ Ψ(ε|κ,L, ξ, χ, ψ, rf ) . (10.15)
Equations (10.12)–(10.15) imply (10.11). To see this, note that if we

first fix η, then fix ξ sufficiently small, then fix ψ,χ, sufficiently small and
finally, fix ε sufficiently small, we can make the term, Ψ(ε|κ, τ, L, rf ), in
(10.11) as small as we like. This suffices to complete the proof. �

Let {(Zi, z̄i, µi)} be a sequence of measure metric spaces as above and

let f̃i, F̃i : BR(z̄i)→ R be Lipschitz with f̃i − F̃i ∈
◦
H1,p. We say that {F̃i}

minimizes the Dirichlet p-energy asymptotically with respect to the boundary
values, {f̃i}, if for any sequence, of Lipschitz functions, Fi : BR(z̄i) → R,

with f̃i − Fi ∈
◦
H1,p, we have

lim sup
i
|Lip F̃i|Lp ≤ lim inf

i
|LipFi|Lp (10.16)

Corollary 10.17. Let (Zi, z̄i, µi)
dGH−−→ (Z, z̄, µ) and assume that (0.1)

holds for all (Zi, µi), with constant, κ, independent of i. Let f : BR(z̄)→ R
be Lipschitz. Let f̃i, F̃i : BR(z̄i) → R, be sequences of Lipschitz functions
such that f̃i → f , and |Lip f̃i|L∞ ≤ L, for all i and some L. Assume in
addition, that {F̃i} minimizes the Dirichlet p-energy asymptotically with
respect to the boundary values, {f̃i}. Then

lim sup
i
|Lip F̃i|Lp ≤ |Lip f |Lp . (10.18)

Proof. For each i, take (Zi, z̄i, µi) = (Ẑ, ẑ, µ̂) as in Lemma 10.7, and put
fi = f̂ , where f̂ is as in that lemma. It follows from Lemma 10.7 that
(10.18) holds with F̃i replaced by fi.

We can slightly modify the functions, fi, near ∂BR(z̄i), while leaving the
Dirichlet energy unchanged in the limit, i→∞, so as to obtain a sequence
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Lipschitz functions with the same boundary values as the f̃i; compare the
discussion at the beginning of the proof of Lemma 16.19. Thus, (10.18)
holds with the F̃i replaced by the functions in this sequence. However, since
the functions, F̃i, minimize the p-energy asymptotically, (10.18) holds as
well. �

Now let us return to consideration of the functions, fri,z. Recall that the
function f is asymptotically p-harmonic at z. In particular, the sequence,
{fri,z}, minimizes the Dirichlet p-energy asymptotically with respect to its
own boundary values. Thus, Corollary 10.17 implies (10.6). This suffices
to complete the proof of Theorem 10.2, our generalization of Rademacher’s
Theorem. �

Before proceeding further, we point out the following which may help
to clarify the discussion.

Let {(Z, z, r−1
i d, µ

i
)} dGH−−→ (Zz, z∞, d∞, µ∞) and let {ψi} be a corre-

sponding sequence of Gromov-Hausdorff approximations. Let f : Z → R
be Lipschitz. Note that when we speak of f0,z, in actuality, we must choose
a sequence, {ψi}, as above. Otherwise, Zz is only well defined up to isom-
etry. However, the collection of all functions, u : Zz → R, such that there
exists f and {ψi} as above, with u = fz, is invariant under isometries of Zz.

If we use Theorem 10.2 in place of Theorem 3.7, we obtain the following
counterpart of Theorem 4.38.
Theorem 10.19. There exists N = N(κ, τ) such that the following
holds: If (Z,µ) satisfies (0.1), and (4.3), for some 1 < p < ∞, with Z a
length space, then there exist measurable sets, Uα and Lipschitz functions,
f1, . . . , fk : Z → R, where k = k(α) ≤ N , such that µ(Z \ ∪αUα) = 0 and
for all α, f(a), the following holds:

i) For all z ∈ Uα and constants, a1, . . . , ak, the function, a1f1+· · ·+akfk,
is infinitesimally generalized linear at z. Moreover, for all tangent
cones, Zz, the space spanned by (f1)0,z, . . . , (fk)0,z has dimension k.

ii) If f : Z → R is Lipschitz, then there exist functions, bα1 , . . . , b
α
k , of

class L∞, such that for µ-a.e. z ∈ Uα and all tangent cones, Zz,
f0,z = bα1 (z)(f1)0,z + · · ·+ bαk (z)(fk)0,z.

11 Small Scale and Infinitesimal Structure

Let (Z,µ) satisfy (0.1), and (4.3), for some 1 < p < ∞. Under these
assumptions, we show that in a suitable sense, the pair, (Z,µ), exhibits a
certain amount of small scale and infinitesimal regularity.
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Let z ∈ Z and let C = Zz be a tangent cone at z. A space, Cj , is an
iterated tangent cone at z ∈ Z, if there exists a sequence, C1, . . . , Cj , such
that C1 = Zz is a tangent cone at z and for 2 ≤ i ≤ j, Ci is a tangent cone
at some point of Ci−1.

Let (W, θ) satisfy (0.1), and (4.3), for some < p <∞.

Definition 11.1. The pair, (W,θ), is stable if the maximal dimension,
k, of a space Lk, of generalized linear functions on W , is equal to the
maximal dimension of a space of generalized linear functions on any tangent
cone Ww.

Definition 11.2. A stable pair, (W,θ), is a generalized Minkowski space,
if every iterated tangent cone, C, is stable.

Note that if (W, θ) is a generalized Minkowski space, then we can choose
generalized linear functions, `1, . . . , `k, such that i), ii) of Theorem 10.19
hold for all w ∈W , with fi = `i.

Remark 11.3. If the space, W , in Definition 11.2 is a Minkowski space,
then the space, Lk, is of course, unique. The possible nonuniqueness al-
lowed in Definition 11.2, arises from the fact that a linear combination of
generalized linear functions need not be generalized linear.

Example 11.4. The space, W , consisting of 3 half lines emanating from a
single point, together with the measure, θ, given by 1 dimensional Hausdorff
measure, provides an example of a generalized Minkowski space which is
not a Minkowski space. In this case, the dimension of a space of generalized
linear functions of maximal dimension is 1, but the space, L1, is not unique.
We point out that W cannot arise as a tangent cone of a limit space of a
sequence of riemannian manifolds with Ricci curvature bounded below.

Remark 11.5. The conditions of Definition 11.2 together with Theo-
rem 10.2, might initially suggest that any Lipschitz function, u, can be
written as a function of a set of generalized linear functions, `1, . . . , `k,
which form a basis for a subspace of generalized linear functions, Lk, of
maximal dimension, i.e. that such functions are coordinates. However, this
need not be the case since the level surfaces (and intersections of level
surfaces) of the functions, `1, . . . , `k, need not be rectifiably connected;
compare Examples 4.62, 11.4 and Conjectures 4.63, 4.65.

Theorem 11.6. Let (Z,µ) satisfy (0.1), and (4.3), for some 1 < p <∞.
Let {Ci} be a sequence of iterated tangent cones such that such that C1 = Zz
is a tangent cone at some z ∈ Z and for 2 ≤ i ≤ j, Ci is a tangent cone at
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some point of Ci−1. Then there exist N < ∞ such that Ci is a generalized
Minkowski space, for all i ≥ N .

This follows directly from that fact that there is a definite bound,
N(κ, τ), on the dimension of a space of generalized linear functions; see
Lemma 4.37.

From Theorem 11.6, together with a standard argument based on the
Vitali covering theorem, we obtain:

Theorem 11.7. Let (Z,µ) satisfy (0.1), and (4.3), for some 1 < p <∞.
Then for all ε > 0, there exists r(ε, κ, τ, Z, µ) > 0, with the following
property. Given 0 < r < r(ε, κ, τ), there exists Gε = ∪iBri(zi), with
ri > r(ε, κ, τ, Z, µ), such that µ(Z \ Gε) < ε, and for all z ∈ Gε,r, there
exists a generalized Minkowski space, (Wi, θi) and wi ∈ Wi, for which, in
the measured Gromov-Hausdorff sense,

dGH
(
Bri(zi), Bri(wi)

)
< εri . (11.8)

In particular, for µ-a.e. z ∈ Z, there exists a tangent cone, Zz, which is a
generalized Minkowski space.

Remark 11.9. One would like to obtain the stronger result that at almost
all points of Z, every tangent cone is a generalized Minkowski space. Given
the stronger assumptions of sections 15, 16, for this it would suffice to
have an a priori estimate for |Lip (Liph)|Lp , for some p ≥ 1, where h is a
p-harmonic function. Then Lemma 16.39 and Proposition 16.43 together
with the arguments of section 2 of [ChCo2] could be applied. However,
in so far as we are aware, the issue of obtaining such estimates is not well
understood even for smooth Finsler manifolds (in which context, it is closely
related to the existence of a suitable Bochner formula).

12 Norms on T ∗Z and Length Space Metrics

Let (Z,µ) satisfy (0.1), and (4.3), for some 1 < p < ∞. Let ρ denote the
underlying metric on Z. Let | · | denote the canonical pointwise norm on
the cotangent bundle T ∗Z, i.e. for f Lipschitz, |df(z)| = gf (z) = Lip f(z),
for µ-a.e. z ∈ Z.

Let || · ||, denote an equivalent norm on T ∗Z, i.e. for some constant,
0 < λ <∞, we have λ−1|ψ(z)| ≤ ||ψ(z)|| ≤ λ|ψ(z)|; see the discussion prior
to Theorem 4.53. We will associate to || · ||, a length space metric, ρ, which
is c(κ, τ)-bi-Lipschitz equivalent to ρ, and show that the canonical norm,
|||df(z)||| = Lip ρ f(z), associated to ρ satisfies || · || ≤ ||| · |||, µ-a.e. Here
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Lip ρ f(z) denotes the pointwise Lipschitz constant defined with respect to
the metric ρ. We will then give a sufficient condition for the equality of the
norms, ||df(z)|| = |||df(z)||| = Lip ρ f(z), for z lying in a given measurable
subset.

For the application in section 13, the crucial point is that properties of
|| · ||, notably strict convexity of the induced norm on TZz := (T ∗Zz)∗,
can be specified in advance, while in addition, for all f0,z lying in a space
of blown up limit functions on a tangent cone, Zz, we have Lip ρ f(z) =
supw′∈∂Br(w)(f0,z(w′)− f0,z(w))/r, for all Br(w) ⊂ Zz. The fact that these
two properties hold simultaneously will enable us to deduce that the canon-
ical Lipschitz map, e : Zz → TZz, is surjective; see section 13.

Fix a collection, {Uα} as in Theorem 4.38. Specifically, we assume that
for all α, the norm, || · ||, is well defined on T ∗Zz, for all z ∈ Uα.

Fix z ∈ Z. Since the norm, || · ||, is λ-quasi-isometric to | · |, µ-a.e.
there is a nonempty set of Lipschitz functions, h, satisfying

h(z) = 0 , (12.1)∥∥dh(z)
∥∥ ≤ 1 (for µ-a.e. z) . (12.2)

Since Z is c(κ, τ)-quasi-convex, it follows easily from Theorem 4.14 that
|h| is bounded above by c(κ, τ, λ)z, z and that the Lipschitz constant of |h|
with respect to the given metric is bounded by a definite constant c(κ, τ, λ).

Put

ρz(z) = sup
h
h(z) , (12.3)

where the sup is taken over all Lipschitz function, h, satisfying (12.1),
(12.2).

Clearly, ρz satisfies (12.1). Also, it is obvious that c(κ, τ, λ)z, z ≤ ρz(z),
since the Lipschitz function, c(κ, τ, λ)z, z, satisfies, (12.1), (12.2).

We claim that ρz is Lipschitz and satisfies (12.2) as well. To see this,
note that if h1, h2 are Lipschitz functions, then at almost all points of the
set on which the function, max(h1, h2) is equal to hi, the differential of
max(h1, h2) is equal to dhi. Moreover, the Lipschitz constant of the func-
tion, max(h1, h2), is at most max(Liph1,Liph2). Thus, if h1, h2 satisfy
(12.1), (12.2) and have a definite bound on their Lipschitz constants, then
the same holds for max(h1, h2).

Choose a countable dense set of points, {zi}, and for each i, j, a function,
hi,j , such that hi,j(zi) ≥ ρz(zi) − j−1. If we put hj = max(h1,j . . . , hj,j),
the function, hj , satisfies (12.1), (12.2) and is Lipschitz. Moreover, the
sequence of functions, {hj} converges uniformly on compact sets to the
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function ρz. Clearly, ρz is Lipschitz, with a definite bound on its Lipschitz
constant.

Now restrict attention to a ball, BR(z), with 0 < R < ∞. From The-
orem 4.53, we get ||dρz(z)|| ≤ 1, for µ-a.e. z ∈ BR(z). Hence, by letting
R→∞, it follows that the function, ρz, satisfies (12.2).

Put ρ(z1, z2) = ρz1(z2). It is trivial to verify that ρ is a metric on Z,
which is bi-Lipschitz to the original one. Hence, (0.1), (4.3) hold for the
metric, ρ, with definite constants.
Proposition 12.4. The metric, ρ, is a length space metric.

Proof. Put ρz,ε(z) = inf{zi}
∑N−1

0 ρ(zi, zi+1), where the inf is take over
all sequences, {zi}, with z0 = z, zN = z, such that ρzi(zi+1) < ε, for all
0 ≤ i ≤ N − 1; compare section 17.

Since Z is complete, it suffices to show that ρz,ε = ρ.
By an argument similar to the one showing that the function, ρz, sat-

isfies (12.1), (12.2) and is Lipschitz, but employing in addition, induction
on the length of the sequence, {zi}, it follows that the function, ρz,ε, also
satisfies (12.1), (12.2) and is Lipschitz. Since it is clear that ρz ≤ ρz,ε, it
follows from the definition of ρz, that in fact, ρz = ρz,ε. This suffices to
complete the proof. �

Let ||| · ||| denote the norm on T ∗Z associated to the metric ρ. We have
Lip ρ ρ(z, z) = 1, for all z, and hence, |||dρ(z, z)||| = 1, for µ-a.e. z. On
the other hand, by construction, ||dρ(z, z)|| ≤ 1, for µ-a.e. z ∈ Z. Thus,
||dρ(z, z)|| ≤ |||dρ(z, z)||, for µ-a.e. z.
Theorem 12.5. For all α, there exists Vα ⊂ Uα, with µ(Uα \ Vα) = 0,
such that on Vα, we have || · || ≤ ||| · |||.
Proof. Fix a ball, BR(z), with 0 < R < ∞. Let fi be a sequence of
functions as in Theorem 6.5, converging uniformly to f . Just as in the proof
of Proposition 6.2, by applying Theorem 4.53, we get ||df(z)|| ≤ |||df(z)|||,
for µ-a.e. z.

Let the notation, fα(a), be as in Theorem 4.38. It follows from the
above that there exists a subset, Vα ⊂ Uα, with µ(Uα \ Vα) = 0, such
that ||dfα(a)(z)|| ≤ |||dfα(a)(z)|||, for µ-a.e. z ∈ Uα and all rational (a). As in
Lemma 4.35, it follows that the same holds for (a) arbitrary. �

Remark 12.6. Let Lip ρ f(z) denote the pointwise Lipschitz constant
defined with respect to the metric, ρ, on Z. If we take || · ||, such that
||df(z)|| = Lip ρ f(z), it follows from Proposition 6.2, that ρ ≤ ρ. In Corol-
lary 15.14, we will give a condition which implies ρ0 = ρ.
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The following theorem provides a sufficient condition, (12.8), which en-
sures that on some fixed Uα, we have norm, || · || = ||| · |||, for µ-a.e. z ∈ Uα.
(Thus, if (12.8) holds for all α, then || · || = ||| · ||| µ-a.e.)

Theorem 12.7. Assume that for some α, all z ∈ Uα and all v ∈ T ∗Zz,
there exists a Lipschitz function, fv, with dfv(z) = v, such that

||dfv(z)|| ≤ ||dfv(z)|| (for µ-a.e. z ∈ Z) . (12.8)

Then there exists Vα ⊂ Uα, with µ(Uα \ Vα) = 0, such that on Vα, we have
|| · || = ||| · |||.

Proof. Let v = dfv(z) be as above. Since ρ(z, z) is the largest Lipschitz func-
tion satisfying (12.1), (12.2), it follows that |fv(z)−fv(z)| ≤ ||dfv(z)||ρ(z, z).
Hence, for all z ∈ Uα and v ∈ T ∗Zz, we get Lip ρ fv(z) ≤ ||dfv(z)||, or equiv-
alently, |||v||| ≤ ||v||. In view of Theorem 12.5, this suffices to complete the
proof. �

13 Hausdorff Measure

Let (Z,µ) satisfy (0.1), and (4.3), for some 1 < p < ∞, with Z com-
plete. From now on, we fix a collection, {Uα}, as in Theorem 4.38. In
this section, with the aid of Theorem 12.7, we prove certain weakened
versions of Conjecture 4.63 For instance, we show that for µ-a.e. z ∈
Uα, we have Hk(α)(Br(w)) ≥ c(κ, τ)rk(α), for all tangent cones Zz and
balls, Br(w) ⊂ Zz. Moreover, there is natural surjective Lipschitz map,
e : Zz → TZz; see also Theorems 13.8, 13.12.

We will begin by making some simple observations which imply in par-
ticular, that if z ∈ Uα and the norm, |df(z)| = Lip f(z), on T ∗Zz is
strictly convex, then dim(Zz) ≥ k(α), for every tangent cone Zz. Al-
though this condition need not hold for the given metric, using the results
of section 12, we can modify the metric so as to achieve it, at least on a
given Uα, for arbitrary α. This suffices for our purposes.

Let us recall some standard facts concerning finite dimensional normed
linear spaces. The following discussion, although more general than is ac-
tually required, may serve to put matters in perspective.

Let V be a finite dimensional vector space with dual space, V ∗. For
0 6= v ∈ V , put Dv = {v∗ ∈ V ∗ | v∗(v) = 1}. Let Tv denote the set of
hyperplanes, H, such that v 6∈ H. For v∗ ∈ V ∗, let N(v∗) denote the
null space of v∗. The map, A : Dv → Tv, defined by A(v∗) = N(v∗), is a
bijection.
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Now assume that V carries a norm, | · |, and let S(V ) denote the unit
sphere. Let V ∗ carry its canonical norm, |v∗| = supv∈S(V ) v

∗(v). Since the
unit ball in V is convex, for all v ∈ S(v), there is at least one supporting
hyperplane. Of necessity, H ∈ Tv.

Let R(V ), the regular set, denote the set of points, v ∈ S(V ), such that
the supporting hyperplane, H is unique. Let W (V ), the weakly strictly con-
vex set, denote the set of points, v ∈ S(V ), such that there exists a support-
ing hyperplane, H, (where of necessity, H ∈ Tv) such that H ∩ S(V ) = v.
Clearly, the sets, R(V ), S(V ), are invariant under the antipodal map.

The norm function on V is Lipschitz and hence differentiable almost
everywhere. Since this function is also homogeneous of degree 1, it follows
that v ∈ R(V ), for almost all v ∈ S(V ). If v ∈ R(V ), then H has first order
contact with S(V ) at v. Conversely, if there exists a hyperplane having
first order contact with S(V ) at v, then v ∈ R(V ) and this hyperplane is
supporting.

If |v| = 1 and v∗ ∈ Dv, then |v∗| = 1, if and only if N(v∗) is a supporting
hyperplane at v. Conversely, if |v∗| = 1, then there exists v ∈ S(V ) such
that N(v∗) is a supporting hyperplane at v.

Define the Legendre transformation, L : R(V ) → S(V ∗), by L(v) =
A−1(H), where H is the unique supporting hyperplane at v. It follows
easily that L(R(V )) = W (V ∗), i.e. the image of the regular set under L
coincides with the set of points of weak strict convexity of S(V ∗). Al-
though in general, the set, W (V ∗), can have measure zero in S(V ∗), we
have W (V ∗) = V ∗ if the norms in question are strictly convex, e.g. if they
come from inner products. Indeed, this case will suffice for our purposes.

Let X denote a compact topological space. Let V denote a finite di-
mensional vector space of bounded functions on X. Equip V with the sup
norm. Let e : X → V∗ denote the evaluation map, e(v) = v(x).

Lemma 13.1. Let v∗ ∈W (V∗), with L(v) = v∗, v ∈ R(V ). If there exists
x ∈ X such that |v| = v(x) = 1, then v∗ ∈ range(e). In particular, for all
v∗ ∈W (V∗), either v∗ ∈ range(e) or −v∗ ∈ range(e)

Proof. Let L(v) = v∗, with v ∈ R(V ). Let x be such that |v| = v(x) = 1.
It suffices to show that e(x) = v∗. To see this, we must verify that for

all h ∈ H = N(v∗), we have h(x) = 0. After replacing h by −h if necessary,
we can assume h(x) ≥ 0. Then for t > 0, we have 1 ≤ (v + th)(x) ≤
|v+ th| = 1 + o(t), where the last equality follows from the fact that H has
first order contact with S(V ) at v. Thus, h(x) = 0. �
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As usual, let dim denote Hausdorff dimension and let Hk denote k-
dimensional Hausdorff measure.
Corollary 13.2. Let X be a compact metric space. Let V denote a
k-dimensional space of Lipschitz functions on X. If the sup norm on V
has the property that dim(W (V∗)) = k − 1, then dim(X) ≥ k − 1. If in
addition, Hk−1(W (V ∗)) > 0, then Hk−1(X) > 0.

Let Lk(α) denote a space of dimension, k(α), of generalized linear limit
functions on some tangent cone, Zz, with z ∈ Uα; see Theorem 10.19. If
f is infinitesimally generalized linear at z, and f0,z ∈ Lk(α), then we have
|df(z)| = Lip f(z) = supw′∈∂Br(w)(f0,z(w′)−f0,z(w))/r, for all Br(w) ⊂ Zz;
see Theorem 8.6.

Recall that by definition, the tangent space, TZz, at z is the vector
space, (T ∗Zz)∗. Associated to the space, L, of the previous paragraph, is
the map e : Zz → TZz.

As above, we get:
Corollary 13.3. Let (Z,µ) satisfy (0.1), and (4.3), for some 1 < p <∞,
with Z a complete length space. If z ∈ Uα and the canonical norm on T ∗Zz
satisfies W (L∗) = S(V∗), then the map, e : Zz → TZz, is surjective and for
all Br(w) ⊂ Zz, we have Hk(α)(Br(w)) ≥ c(k(α))Vol(Br(0)).

The following strengthening of Corollary 13.3 is the main result of this
section.
Theorem 13.4. Let (Z,µ) satisfy (0.1), and (4.3), for some 1 < p <∞.
Then for all Uα, there exists Vα ⊂ Uα, with µ(Uα \ Vα) = 0, such that for
all z ∈ Vα, every tangent cone, Zz and ball, Br(w) ⊂ Zz,

Hk(α)(Br(w)) ≥ c(k(α))Vol(Br(0)) , (13.5)

where Br(0) ⊂ Rk(α). Moreover, the map, e : Zz → TZz, is surjective. In
particular, dim(Zz) ≥ k(α).

Proof. Note that if the metrics ρ1, ρ2 satisfy (0.1), (4.3) and are bi-Lipschitz
equivalent, then for µ-a.e. z and all tangent cones, Zz, a space of generalized
linear limit functions, f0,z, with respect to ρ1, will also be such a space with
respect to ρ2. Hence, at such points, the map, e : Zz → TZz, is independent
of the particular metric, ρ1, ρ2.

Fix α = α. In view of Corollary 13.3, together with what was noted
in the previous paragraph, it suffices to show that for all Uα, their exists
a length space metric, bi-Lipschitz equivalent to the given one, such that
when resticted to Vα as above, the associated norm, ||| · |||, on T ∗Z, is
strictly convex.
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For this, it suffices to exhibit a corresponding norm, || · ||, on T ∗Z, for
which the hypothesis, (12.8), of Theorem 12.7, is satisfied.

Let the notation be as Theorem 4.38. From the discussion preceding
Theorem 4.48, together with a straightforward argument based on Lusin’s
theorem, it follows that we can assume that for all α and all z ∈ Uα,

c(k)−1(|a1|2 + · · ·+ |ak(α)|2
) 1

2 ≤
∣∣dα(a)(z)

∣∣ ≤ c(k)
(
|a1|2 + · · ·+ |ak(α)|2

) 1
2 .

(13.6)
Clearly, we can assume that there exists, L <∞, such that |dfα(a)(z)| ≤

L|dfα(a)(z)|, for all (a) and µ-a.e. z ∈ Z. Define the norm, || · ||, by

putting ||dfα(a)(z)|| = (|a1|2 + · · ·+ |ak(α)|2)
1
2 , for all z ∈ Uα, and ||df(z)|| =

L−1|df(z)| for all z ∈ Uα and all α 6= α. It is obvious that for this || · ||,
(12.8) holds. �

We close this section with two results which provide somewhat weakened
versions Conjecture 4.63.

Recall that the measure, µ, is called Ahlfors k-regular if there exist
constants, 0 < c1 ≤ c2 < ∞, such that for all z ∈ Z and 0 < r < ∞, we
have

c1r
k ≤ µ(Br(z)) ≤ c2rk . (13.7)

Theorem 13.8. Let (Z,µ) satisfy (0.1), and (4.3), for some 1 < p <∞.
Assume that there exist c, r′ > 0, such that for all z ∈ Z and all 0 < r < r′,

crk ≤ µ(Br(z)) . (13.9)
Then for all α,

k(α) ≤ dim(Zz) ≤ k . (13.10)
If in addition, (13.5) holds, for all z ∈ Z and all 0 < r < r′, then for all α,

k(α) ≤ dim(Uα) = dim(Zz) = k . (13.11)
Proof. It is clear that the validity of either (13.7) or (13.9) for all z ∈ Z
and all 0 < r ≤ r′, implies that that the corresponding relation holds for
every tangent cone, Zz, equipped with any renormalized limit measure.
By a standard argument, (13.9) implies dim(Zz) ≤ k, while (13.7) implies
dim(Uα) = k, dim(Zz) = k. From this together with Theorem 13.4, our
assertions follow. �

Let the map, fα, be as in Conjecture 4.63. According to that conjecture,
we have Hk(α)(fα(Uα)) > 0.
Theorem 13.12. Let (Z,µ) satisfy (0.1), and (4.3), for some 1 < p <∞.
Let Kα ⊂ Uα, with µ(Kα) > 0. If (13.9) holds for all z ∈ Kα, with
k = k(α), then Hk(α)(fα(Kα)) > 0.
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Proof. By Theorem 13.4, we can assume that the map, e : Zz → TZz,
is surjective, for all z ∈ Kα and all tangent cones Zz. From this and
a straightforward modification of the proof of Theorem 0.1 of [Co], the
conclusion follows. We omit the details. �

14 Subsets of RN and Bi-Lipschitz Nonimbedding

Let (Z,µ) satisfy (0.1), and (4.3), for some 1 < p < ∞. Fix a collection,
{Uα} as in Theorem 4.38.

In this section we show the following: Assume that there exists an
isometric imbedding i : Z → RN , for some N , i.e. d(i(z1), i(z2)) = z1, z2,
where d denotes distance in RN . Then for all α, there exists Vα ⊂ Uα, with
µ(Uα \Vα) = 0, such that for all z ∈ Vα, the tangent cone, i(Z)i(z) ⊂ RN

i(z),
is unique in the strong sense; see below for the definition. Moreover, the
tangent cone, i(Z)i(z) ⊂ RN

i(z), is actually a subspace of dimension k(α). For
every tangent cone, Zz, there is an (essentially canonical) isometry of Zz
with i(Z)i(z). By a standard density lemma, this implies dim(Vα) ≤ k(α). If
Hk(α))(Vα) > 0, then Vα is k(α)-rectifiable. According to Conjecture 4.63,
this always holds.

If we suppose more generally, that there exists a bi-Lipschitz imbedding,
F : Z → RN , then for all z ∈ Vα, every tangent cone, Zz, is bi-Lipschitz
equivalent to Rk(α) and the additional conclusions above hold without fur-
ther modification.

By an observation of Semmes, a (nonflat) Carnot-Caratheodory space
does not admit a bi-Lipschitz imbedding into RN , for any N ; see [Se4],
where this result is attributed independently to Assouad (unpublished).
The proof is a simple consequence of Pansu’s differentiability theorem for
Lipschitz maps between Carnot-Caratheodory spaces; see [Pa]. For the
spaces constructed in [L], a corresponding nonimbedding theorem has re-
cently been proved by Laakso, via a direct argument. Our general result
implies those of Semmes, Assouad and Laakso, and enables one to treat
the spaces considered in [BoP] as well.

The results of this section are obtained as an application of Theo-
rems 4.38, 12.7, 13.4. We are indebted to Stephen Semmes for suggesting
that some sort of general bi-Lipschitz nonimbedding theorem could hold.

We begin by collecting some basic facts concerning tangent cones of
subsets of RN and induced maps on tangent cones in general.

Recall that the existence of a canonical family of homotheties fixing any
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point, x ∈ RN , enables us to define the tangent cone, RN
x , unambiguously,

i.e. any two tangent cones are canonically identified and these identifications
are mutually consistent. We express this by saying that for all x ∈ RN ,
the tangent cone, RN

x , is unique in the strong sense. Of course this tangent
cone can be canonically identified with the tangent space to RN at x.

More generally, let A ⊂ RN , be equipped with the induced metric. If,
under rescaling at x, the set, A, converges in the Gromov-Hausdorff sense,
to a unique subset of RN

x , we say that the tangent cone, Ax ⊂ RN
x , is

unique in the strong sense.
If we just consider A qua metric space, then tangent cones, Ax, are only

well defined up to isometry. Even if any two such intrinsic tangent cones,
A′x, A

′′
x are isometric, the tangent cone Ax ⊂ RN

x , may fail to be unique in
the strong sense. However, if Ax ⊂ RN is unique in the strong sense, it is
certainly isometric to any intrinsically defined tangent cone.

More generally, let Zj be proper and assume that µj satisfies (0.1)
j = 1, 2. Let F : Z1 → Z2 be Lipschitz. Given, a tangent cone, (Z1)z,
by passing to a suitable subsequence {rk} of {ri}, we obtain a tangent
cone, (Z2)F (z), and an induced map F∗ : Zz → ZF (z), which depends only
on the subsequence (and is otherwise canonical). Similarly, given (Z2)F (z),
by passing to a subsequence, we obtain, (Z1)z, and a map, F∗ : Zz → ZF (z).

Let V denote a finite dimensional space of Lipschitz functions on Z2.
For all z ∈ Z1, there exists a subsequence, {r`} of {rk}, such that for all
f ∈ V, the limit function, f0,F (z), exists. Let V0,z denote the space spanned
by the functions, f0,F (z), where f ∈ V. The canonical map, f → f0,F (z), is
linear.

Let F ∗ denote the adjoint of the map F∗, i.e. the map on functions
induced by composition with F∗. (Recall that in section 4, we defined the
map, F ∗ : T ∗Z2 → T ∗Z1.) It is straightforward to check that the limit
space, (V ◦ F )0,z, exists for the rescaling sequence {r`}. Moreover, we
have F ∗(V0,F (z)) = (V ◦ F )0,z and the map, F ∗, is given by F ∗(f0,F (z)) =
(f ◦ F )0,z.

Theorem 14.1. Let (Z,µ) satisfy (0.1), and (4.3), for some 1 < p <∞,
with Z complete. Assume in addition, that there exists an isometric imbed-
ding, i : Z → RN , for some N < ∞. Then for all sets, Uα, as in Theo-
rem 4.38, there exists a subset, Vα, with µ(Uα \ Vα) = 0, such that for all
z ∈ Vα, the tangent cone, i(Z)i(z) ⊂ RN , is unique in the strong sense and
equal to a subspace of dimension k(α). Moreover, dim(Vα) ≤ k(α).

Proof. Let i : Z → RN denote an isometric imbedding.
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Let V denote the space of Lipschitz functions on RN spanned by the
coordinate functions, x1, . . . , xN . As in the proof of Theorem 4.38, for all α,
there exists a subset, Vα ⊂ Uα, such that for all constants, a1, . . . , aN , the
function, a1(x ◦ i)1 + · · ·+ aN (xN ◦ i), is asymptotically generalized linear,
for all z ∈ Vα. For any choice of i∗ (gotten, as above, by choosing a suitable
sequence of rescalings) we have, i∗(V0,i(z)) = (V ◦ i)0,z. Thus, it follows that
the space, i∗(V0,i(z)), consists of generalized linear functions, which each of
which is the blown up limit of a Lipschitz function, which is asymptotically
generalized linear at z. Hence, dim i∗(V0,i(z)) ≤ k(α).

Let Ti(z), denote the common null space of the space of linear functions,
a1x1+· · ·+aNxN , whose differentials are in the kernel N(i∗)i(z), of the map
i∗ : T ∗RN → T ∗Zi(z). It follows that for any map, i∗, as above, we have
i∗(Zz) = i(Z)i(z) ⊂ Ti(z). Note that dim(Ti(z)) = dim i∗(V0,i(z)) ≤ k(α).

Since i is an isometric imbedding, i∗ is an isometric imbedding as well.
Hence, we get dimZz ≤ k(α), for all z as above and any tangent cone, Zz.
By a standard density lemma for Hausdorff measure (see, e.g. [F]) it follows
that dim(Vα) ≤ k(α).

By Theorem 13.4, after replacing Vα by a suitable subset of full measure,
we can assume that the map, e : Zz → TZz, is surjective, for all z ∈ Vα and
all tangent cones, Zz. On the other hand, if we identify the space, Ti(z),
with its double dual, then the natural map, i∗ : TZz → Ti(z), is clearly
surjective.

Since, as is easy to check, i∗ ◦ e = i∗, it follows that this map is both an
isometric imbedding and surjective. This suffices to complete the proof. �

By modifying the definition of Vα if necessary, we can assume that z
is a Lebesgue point of Uα for all α and z ∈ Vα. Recall that conjecturally,
Hk(α)(Vα) > 0, for all α; see Conjecture 4.63. Under the assumptions of
Theorem 14.1, we have dim(Vα) ≤ k(α).
Theorem 14.2. Let (Z,µ) satisfy (0.1), and (4.3), for some 1 < p <∞,
with Z complete. Assume in addition, that Z admits an isometric imbed-
ding i : Z → RN , for some N < ∞. If Hk(α)(Vα) > 0, then Vα is k(α)-
rectifiable. In particular, if (13.9) holds with k = k(α), for all z ∈ Vα, then
Vα is k(α)-rectifiable.

Proof. Since by Theorem 14.2, for all z ∈ Vα, the set i(Z) has a unique
approximate tangent plane of dimension, k(α), this follows from a standard
characterization of rectifiable sets; see [F]. �

As an immediate consequence of Theorem 14.1, we get the following
bi-Lipschitz nonimbedding theorem.
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Theorem 14.3. Let (Z,µ) satisfy (0.1), and (4.3), for some 1 < p <∞,
with Z complete. Assume in addition, that Z admits a bi-Lipschitz imbed-
ding in RN , for some N < ∞. Then for all sets, Uα, as in Theorem 4.38,
there exists a subset, Vα, with µ(Uα \ Vα) = 0, such that for all z ∈ Vα,
every tangent cone, Zz, is bi-Lipschitz to Rk(α).

It is not difficult to check that Carnot-Caratheodory spaces, Laakso
spaces and the boundaries of 2-dimensional hyperbolic buildings all violate
the necessary condition of Theorem 14.3. On the other hand, in [HaHe],
an Ahlfors n-regular space satisfying a Poincaré inequality of type (1,1) is
constructed for all positive integers n. These spaces are rectifiable and are
believed to admit bi-Lipschitz imbeddings in Rn+1.

15 (ε, δ)-Inequalities and Thickly Minimally Connected
Spaces

Let Z be a rectifiably connected metric space and let µ be a Borel regular
measure on Z. In this section, we formulate certain inequalities which
we call (ε, δ)-inequalities. Under the assumption that Z satisfies an (ε, δ)-
inequality for all ε, δ > 0, with constant, Cε,δ, which might blow up as
ε, δ → 0, it is essentially trivial to obtain a quantitative version of the
equality, gf = Lip f ; see Lemma 15.6. This plays a key role in section 16.

We also define the concept of being (ε, δ)-thickly connected. It fol-
lows easily that a space which is (ε, δ)-thickly connected admits an (ε, δ)-
inequality; see Theorem 15.17 and compare also [Se3], where thick families
of paths are used to obtain Poincaré inequalities and sufficient conditions
are given for the existence of such thick families. We call a space thickly
minimally connected if it is (ε, δ)-thickly connected for all ε, δ > 0.

The spaces constructed by T.J. Laakso in [L], provide the first family
of examples of length spaces of arbitrary Hausdorff dimension, 1 ≤ d <∞,
which carry a measure satisfying (0.1) and which are thickly minimally
connected. An inequality which we call the segment inequality is also satis-
fied; see (15.21). The segment inequality, a strong version of the Poincaré
inequality, implies the existence of a strong version of (ε, δ)-inequality, for
all ε, δ > 0. Laakso’s spaces are Ahlfors-regular and the relevant measure
is Hausdorff measure.

We begin by noting that the definition of the function Fg of section 5 can
be generalized as follows. Given a nonnegative Borel function, g : Z→[0,∞],
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we define Fg,ε : Z × Z → [0,∞], by

Fg,ε(z1, z2) = inf
c

∫ `

0
g(c(s)) ds , (15.1)

where the infimum is over all curves, c, from z1 to z2, of length at most
(1 + ε)z1, z2.

Remark 15.2. We have Fg,∞ = Fg. However, for ε < ∞, the function,
Fg,ε does not define a pseudometric in general, since the triangle inequality
need not hold. As a consequence, even if the function, g, is bounded, it
need not be an upper gradient for Fg,ε. On the other hand, if g is an upper
gradient for f , then |f(z1)− f(z2)| ≤ Fg,ε(z1, z2); compare section 5.

Let ρ : Z × Z → [0,∞) be given by ρ(z1, z2) = z1, z2 and let c denote a
constant function. The function, Fg,ε, satisfies

Fc+h,ε ≤ c(1 + ε)ρ+ Fh,ε ; (15.3)

compare (5.11).
In the following Definition 15.4, we put z1, z2 = r.

Definition 15.4. The metric space, Z, satisfies an (ε, δ)-inequality if
there exists Cε,δ <∞, such that for all g and z1, z2 ∈ Z, there exist z′1, z

′
2,

with zj , z
′
j ≤ δr, j = 1, 2, and

Fg,ε(z′1, z
′
2) ≤ Cε,δr −

∫
B(1+ε)(1+2δ)r(z1)

g dµ . (15.5)

Our basic observation is that if an (ε, δ)-inequality holds, then the term,
Fh,ε, in (15.3), can be estimated by applying (15.5) with g replaced by h.
This is of particular interest in situations in which the normalized L1 norm
of h is small, e.g. if z is a Lebesgue point of the function g and the distance,
r, from z1, to z2 is sufficiently small. In this circumstance, h can be viewed
as the “lower order term” in (15.3). Note that for the “leading term”, the
inequality, Fc,ε ≤ c(1 + ε)ρ, becomes sharp as ε → 0. Thus, any possible
lack of sharpness in the constant in the (ε, δ)-inequality, effects only the
lower order term.

Lemma 15.6. Let (Z,µ) satisfy an (ε, δ)-inequality, with ε, δ ≤ 1, and let
f : Z → R be a Lipschitz function, with

Lip f ≤ L . (15.7)

If g is a generalized upper gradient for f , such that for some Borel function,
h ≥ 0, and constant, c ≤ L,

g(z) ≤ c+ h (on B(1+ε)(1+2δ)r(z)) , (15.8)
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then for z, z = r,
|f(z)− f(z)|

r
≤ c+ 4(ε+ δ)L+ Cε,δ −

∫
B(1+ε)(1+2δ)r(z)

hdµ .
(15.9)

Proof. Assume first that f is Lipschitz and g is a generalized upper gradient
for f .

For z′, z′ as in Definition 15.4, we have by (15.3),∣∣f(z)− f(z)
∣∣ ≤ 2δLr +

∣∣f(z′)− f(z′)
∣∣

≤ 2δLr + Fg+ε(z′, z′)
≤ 2δLr + c(1 + ε)(1 + 2δ)r + Fh,ε(z′, z′)
≤ (c+ 4δL+ 4εL)r + Fh,ε(z′, z′) . (15.10)

By using (15.5) to estimate the term, Fh,ε(z′, z′), we get (15.9).
If more generally, g is an generalized upper gradient of f , we take

fi
Lp−→ f , gi

Lp−→ g, with gi an upper gradient for fi and apply the pre-
vious argument. In this way, the proof is easily completed. �

Corollary 15.11. If (Z,µ) satisfies an (ε, δ)-inequality for all ε, δ > 0,
then gf = Lip f , for all Lipschitz functions f . In particular, if, under the
assumptions of Lemma 15.6,

Cε,δ = CN+1(ε−N + δ−N ) , (15.12)

then
|f(z)− f(z)|

r
≤ c+ 8CL

N
N+1

(
−
∫
B(1+ε)(1+2δ)r(z)

hdµ

)1/(N+1)

.
(15.13)

Proof. This follows by using (15.12) and equating the second and third
terms on the right-hand side of (15.9). �

In the next corollary, we consider (Z,µ) satisfying (0.1), (4.3). We let
ρ0 denote the length space metric canonically associated to the underlying
metric and let metric, ρ be as in Remark 12.6.

Corollary 15.14. If (Z,µ) satisfies (0.1), and (4.3), for some 1 < p <∞
and for the metric, ρ0, an (ε, δ)-inequality holds for all ε, δ > 0, then ρ0 = ρ.

Proof. We have Lip ρ0
ρ ≤ Lip ρ ρ = 1, for µ-a.e. z. It follows from

Lemma 15.6, that Lip ρ0
ρ(z, z) ≤ 1, for all z. Clearly, this suffices to com-

plete the proof. �

Definition 15.15. A pair, (Z,µ), with Z a length space, is called (ε, δ)-
thickly connected, if for all z1, z2 ∈ Z, there exists,
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• a measure space, X = Xε,δ(z1, z2), θ = θε,δ(z1, z2) with r · θ(X) =
µ(B(1+ε)(1+2δ)r(z1)),
• a subset U = {(s, x) | 0 ≤ s ≤ `(x)} ⊂ [0,∞), for some measurable

function, ` : X → [0,∞),
• a measurable map, φ : U → Z, such that φ | [0, `(x)] is a curve pa-

rameterized by arclength, for all x ∈ X,
such that for all x ∈ X,

i) φ((0, x)) ∈ Bδr(z1), φ((`(x), x)) ∈ Bδr(z2), where r = z1, z2,
ii) `(x) ≤ (1 + ε)φ((0, x)), φ((`(x), x)),
iii) for some 0 < C ′ε,δ <∞ and all z1, z2,

φ∗(ds× θ) ≤ C ′ε,δ · µ . (15.16)
It is clear from the definition that say a (2, 1/4)-minimally connected

length space satisfies (0.1) for some constant κ = κ(C2,1/4). It is also clear
that any ball whose complement contains a point at a definite distance from
the boundary, satisfies an isoperimetric inequality in the sense of [BHo],
with a definite constant depending on C2,1/4.
Theorem 15.17. If (Z,µ) is (ε, δ)-thickly connected then an (ε, δ)-
inequality holds, with constant, Cε,δ = C ′ε,δ.

Proof. By i)–iii) above, we get∫
X

(∫ `(x)

0
g ◦ φ(x, s)ds

)
dθ ≤ C ′ε,δ

∫
B(1+ε)(1+2δ)r(z1)

g dµ . (15.18)

From this, together with the properties preceding i)–iii), the conclusion
follows. �

Definition 15.19. A pair, (Z,µ), is called thickly minimally connected if
it is (ε, δ)-thickly connected, for all ε, δ > 0.

Note that a (complete) thickly minimally connected space is in partic-
ular, a length space and satisfies the conclusion of Corollary 15.11.
Remark 15.20. It is not clear that thickly minimally connected spaces
satisfy a Poincaré inequality. However, for the Poincaré inequality to hold,
it suffices to assume the condition on the existence of thick families of
paths given in [Se3]. Thus, it might be natural to define a notion of thickly
connected space, whose definition requires this condition and thick min-
imal connectedness. In view of Lemma 15.6 and Theorem 15.17, for a
thickly minimally connected space, the existence of a Poincaré inequality is
equivalent to the existence of an isoperimetric inequality for arbitrary sets;
see [BHo].
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It follows immediately from directionally restricted relative volume com-
parison that for riemannian manifolds, Mn, diameter at most d and Ricci
curvature, RicMn ≥ −(n− 1), is thickly minimally connected and (15.12),
holds with C = C(n, d), N = 2n.

For manifolds with RicMn ≥ −(n − 1) and their limit spaces, the ex-
istence of (ε, δ)-inequalities, for all ε, δ > 0, can also be deduced from the
doubling condition and the segment inequality which is a strong version of
the Poincaré inequality; compare [ChCo1,3].

Fix 1 ≤ p <∞. We say that the segment inequality holds if there exists
τ = τ(d) such that for all z and 0 < r ≤ d,

−
∫
Br(z)×Br(z)

Fg,0 d(µ×µ) ≤ τr −
∫
B2r(z)

g dµ . (15.21)

16 Quantitative Behavior of Almost Generalized Linear
Functions

In this section, we assume that Z is a complete length space satisfying an
ε, δ-inequality, for all (ε, δ). We will give quantitative versions of some
of our previous estimates. The main results are Theorem 16.32. and
Proposition 16.43 (the latter of which requires that (4.3) holds, for some
1 ≤ p < ∞). These have applications in the context of [ChCoMi] and
[ChCo3].

We begin by showing that functions which almost satisfy the assump-
tions of Theorems 8.5, 8.6, almost satisfy the conclusions of those theorems.
Then we give some observations which yield an explicit estimate on the
function, rf , on which the function, Ψ, of (16.42) depends.

Remark 16.1. Our discussion could equally well be carried out under
the assumption that (0.1) and the segment inequality, (15.21), hold.

Our next two results, Lemmas 16.2, 16.11, are simple elaborations of
Lemma 15.6. Recall that the existence of a (2, 1/4)-inequality implies that
(0.1) holds, with κ = κ(C2,1/4).

Lemma 16.2. Let (Z,µ) satisfy an (ε, δ)-inequality, for all ε, δ > 0. Let
f : Z → R, be Lipschitz, with

Lip f ≤ L . (16.3)

If g is a generalized upper gradient for f , such that for some z ∈ Z, r > 0,
h ≥ 0, c ≤ L,

g(z) ≤ c+ h (onB5r(z)) (16.4)
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and

−
∫
B5r(z)

hdµ < 2−3κλc . (16.5)

Then for all ε > 0 and θ ≤ 1, there exists U ⊂ Br(z), such that
µ(U)

µ(B5r(z))
≤ θ, (16.6)

and for z1, z2 ∈ Br(z) \ U ,
|f(z1)− f(z2)|

z1, z2
≤ (1 + χ)c , (16.7)

where
χ = 8εLc + Cε,ε

λ
θ . (16.8)

Proof. Without loss of generality, we can assume say ε < 1/4, δ < 1/2.
Fix θ < 1. By the standard covering argument based on (0.1), there

exists, {B6si(zi)}, such that if we put U = ∪iB6si(zi) ∩B5r(z), then (16.6)
holds and for z ∈ B5r(z) \ U , and Bs(z) ⊂ B5r(z), we have

hz,s ≤ 23κ c
θλ . (16.9)

By Lemma 15.6, this suffices to complete the proof. �

Remark 16.10. Under the assumption that (4.3) holds, there is a version
of Lemma 16.2, in which the bound, (16.3), on Lip f is omitted.

Lemma 16.11. Let (Z,µ) satisfy an (ε, δ)-inequality, for all ε, δ > 0.
Assume (16.3), (16.4) and

−
∫
B5r(z)

hdµ <
2−3κ

Cψ1L/160c,ψ1L/160c

(
ψ1

48

)κ+1

c . (16.12)

Then there exists f̆ : Br(z)→ R, with
Lip f̆ ≤ c , (16.13)

and
|f − f̆ |L∞ ≤ ψ1Lr . (16.14)

Proof. If in Lemma 16.2, we choose λ such that two terms on the right-
hand side of (16.8) are equal, we get χ = 16εLc = 1

10ψ1, where by definition,
ψ1 = 160εLc . If we also choose θ such that 5χ = 24 · θ1/κ, then the right-
hand side of (16.5) is easily seen to be greater than the right-hand side of
(16.12).

Let U , be as in Lemma 16.2. By MacShane’s lemma (see (8.2), (8.3))
we can extend f |U to a function, f∗ : B5r(z)→ R, without increasing its
Lipschitz constant. Put

f̆ =
1

1 + χ
f∗ +

χ

1 + χ
f∗(z) . (16.15)
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Clearly, (16.13) holds. Moreover, since f̆(z) = f∗(z) and

Lip (f̆ − f∗) ≤ χc , (16.16)

we get

|f̆ − f∗|L∞ ≤ 5χcr . (16.17)

By (16.3), (16.13), we have Lip (f − f∗) ≤ 2L. From (0.1), (16.6), it
follows that the set on which f − f∗ vanishes is 12 · θ1/κ-dense. Thus, with
(16.17), we get

|f − f̆ |L∞ ≤ (5χ+ 24θ1/κ)Lr
= ψ1Lr . (16.18)

This completes the proof. �

In Lemma 16.19 and Theorem 16.32 below, the functions k∗, k∗, and
f̆∗, f̆∗, are defined as in (8.2), (8.3), where A = ∂Br(z).

Lemma 16.19. Let (Z,µ) satisfy (0.1) and let ∂Br(z) 6≡ ∅. Let k :
∂Br(z)→ R, satisfy

Lip k ≤ c (c ≤ L) , (16.20)

Assume there exists v : ∂Br(z)→ R, such that

Lip v ≤ L , (16.21)
sup
∂Br(z)

|v − k| ≤ ψ1Lr , (16.22)

and for any Lipschitz function, ṽ : Br(z)→ R, with ṽ | ∂Br(z) = v,

c− ψ2L ≤
(
−
∫
Br(z)

(Lip ṽ)p dµ
)1/p

. (16.23)

Then

k∗ ≤ k∗ + 4
(
ψ2 + 5(2ψ1)β/p

)1/pκ
Lr , (16.24)

with β is as in (6.14).

Proof. Let v′, k̃ be extensions of v, k to Br(z), with Lip v′ ≤ L and Lip k̃ ≤ c.
Fix η > 0 and let φ : Br(z) → [0, 1] be the Lipschitz function such

that φ | ∂Br(0) ≡ 0, φ |B(1−η)r(z) ≡ 1 and |Lipφ|L∞ ≤ (ηr)−1. By taking
ṽ = k̃+(1−φ)(v′−k̃) in (16.23), and employing Lemma 1.7, (6.13), (16.21),
(16.22), we get(
−
∫
Br(z)

(Lip ṽ)p dµ
)1/p

≤
(
−
∫
Br(z)

(Lip k̃)p dµ
)1/p

+ (2η)β/p(ψ1Lη
−1 + 4L) . (16.25)
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Taking η = ψ1, and using (16.23), gives

c− ψ2L− 5(2ψ1)
β
pL ≤

(
−
∫
Br(z)

(Lip k̃)p dµ
)1/p

.
(16.26)

Since Lip k̃ ≤ c, we have

(Lip k̃)p + (c− Lip k̃)p ≤ cp . (16.27)

Raising both sides of (16.26) to the power, p, and using (16.27), easily yields(
−
∫
Br(z)

∣∣c− (Lip k̃)
∣∣pdµ)1/p

≤ 2
(
ψ2 + 5(2ψ1)β/p

)1/p
L .

(16.28)

In particular, this holds for k̃ = k∗, k∗.
Assume that for some w ∈ Br(z), we have k∗(w) + 2θr ≤ k∗(w). Put

K = 1
2(k∗(w) + k∗(w)).

Since Lip k∗ ≤ c, Lip k∗ ≤ c, it follows that the set of points, z, such
that

k∗(z) ≤ K ≤ k∗(z) , (16.29)

contains the ball, Bθr/c(w).
Let the function, k̂, given by

k̂(z) =


k∗(z) if k∗(z) ≤ K ,

K if k∗(z) ≤ K ≤ k∗(z) ,
k∗(z) if K ≤ k∗(z) .

(16.30)

By construction, Lip k̂ ≤ c and k̂ | ∂Br(z) = k | ∂Br(z). Thus, (16.28)
holds, with k̃ replaced by k̂. Also, since Lip k̂ |Bθr/c(w) ≡ 0, from (0.1)
and (16.28) we get

c =
(
−
∫
Bθr/c(w)

|Lip k̂ − c|p dµ
)1/p

≤
(

2c
θ

)κ
2
(
ψ2 + 5(2ψ1)β/p

)1/p
L .

(16.31)
This gives (16.24). �

By combining Lemma 16.19 with Lemma 16.11, taking v = f | ∂Br(z)
and k = f̆ | ∂Br(z), we immediately obtain:

Theorem 16.32. Let (Z,µ) satisfy (0.1) and an (ε, δ)-inequality, for all
ε, δ > 0. Let f : B5r(z)→ R satisfy (16.3), (16.4), (16.12). Assume in ad-
dition that for any Lipschitz function, f̃ : Br(z)→ R, with f̃ | ∂Br(z) = f ,

c− ψ2L ≤
(
−
∫
Br(z)

(Lip f̃)p dµ
)1/p

. (16.33)
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Then the function, f̆ , satisfying (16.13), (16.14), whose existence is guar-
anteed by Theorem 16.11, also satisfies

f̆∗ ≤ f̆∗ + 4
(
ψ2 + 5(2ψ1)β/p

)1/pκ
Lr (on Br(z)) , (16.34)

with β is as in (6.14). In particular, the conclusions of Lemma 8.17 hold,
with f replaced by f̆ .

Remark 16.35. By arguing as in section 8 (see in particular, The-
orem 8.11) we can employ Theorem 16.32 to show directly that on Rn,
asymptotically generalized linear functions converge in the limit as r → 0,
to linear functions.

Remark 16.36. In view of Remark 16.35, the most direct route to ob-
taining the classical theorem of Rademacher via the results of this paper,
would be the following. Use Theorems 3.7, 15.17 and Corollary 15.11 to
show that on Rn, a Lipschitz function, f , is asymptotically generalized lin-
ear and in addition, gf (x) = Lip f(x), for a.e. x. Then use Theorem 16.32
and the argument of Theorem 8.11 to show that f is asymptotically lin-
ear (as defined after (0.4)). Finally, use Lemmas 4.32, 4.35 to show the
uniqueness of limit functions, f0,x, as in (0.2)–(0.4).

Now, we give a quantitative version of Lemma 6.30, in which the func-
tion, rf , of that lemma is replaced by a function, Rf , depending only on the
parameters, η, δ. Our next lemma, relies on Lemma 15.6 and is otherwise
completely analogous to Lemma 6.30. Hence the proof is omitted. The
function, Ψ depends only on the specified parameters, κ, τ, L, ξ; compare
section 10.

Let f : BR(z̄) → R be Lipschitz. It follows from Lemma 6.30 that for
all 1 > η,ψ > 0, there exists 0 < Rf (η, δ), and Zf (η, ψ) ⊂ BR(z̄), such that

µ
(
Zf (η, ψ)

)
> (1− η)µ

(
BR(z̄)

)
, (16.37)

and for all z ∈ Zf (η, ψ), we have

−
∫
B3r(z)

∣∣Lip f(z)− Lip f(z)
∣∣p dµ < ψ (r ≤ Rf (η, ψ)) . (16.38)

Lemma 16.39. Let (Z,µ) satisfy (0.1) and an (ε, δ)-inequality, for all
ε, δ > 0. Let f : BR(z̄)→ R be a Lipschitz function satisfying

Lip f ≤ L . (16.40)

Then for all 1/2 > η, ξ > 0, there exists a finite collection of balls, {Brj (zj)},
such that (6.31), (6.32), (6.34) hold. In addition,

rj > C
(
κ,Rf (η, ψ)

)
, (16.41)
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and for all z1,j , z2,j ∈ Brj (zj), such that z1,j , z2,j > ξrj , we have

|f(z1,j)− f(z2,j)|
z1,j , z2,j

< Lip f(zj) + Ψ(δ|κ,Cε,δ, L, ξ) .
(16.42)

Assume that for some q > 0, the function, Lip f , lies in H1,q. By
applying Lemma 16.39, to the function, Lip f , we immediately obtain the
following estimate for the function, Rf .

Proposition 16.43. Let (Z,µ) satisfy (0.1), and (4.3), for some 1<p<∞.
If f : Z → R is a Lipschitz function satisfying (16.40) and for some q > 0,

|Lip f |H1,q ≤ A , (16.44)

then

Rf (η, ψ) ≥ Cq(κ, τ, L,A, η, ψ) . (16.45)

17 Appendix: Quasi-convexity

We are indebted to Stephen Semmes for explaining to us the proof of Theo-
rem 17.1 below. The proof which follows is an exposition (employing (4.22))
of Semmes’ argument; compare also [DSe2] and for Semmes’ exposition, see
Lemma 2.38 of [Se5].

Theorem 17.1. Let (Z,µ) satisfy (0.1), and (4.3), for some 1 < p <∞,
with Z complete. Then Z is c(κ,C)-quasi-convex.

Proof. Let Z be a metric space. We say the z,w ∈ Z lie in the same
ε-component of Z if there exists a finite sequence z0, . . . , zN , with z0 = z,
zN = w such that zi, zi+1 ≤ ε, for all 1 ≤ i ≤ N − 1. Clearly, the ε-
component of z is a closed set containing Bε(z). Moreover, the relation of
lying in the same ε-component is an equivalence relation.

If z,w lie in different ε-components, then it is obvious that there exists
no rectifiable curve from z,w. Thus, the function, g ≡ 0, is an upper
gradient for the characteristic function of any component.

The assumption that Z carries a nontrivial measure, µ, satisfying (0.1),
implies every ε-component has positive measure. By applying (4.3) to the
characteristic function of some component, it follows that there is just one
ε-component in this case.

For ε > 0, define the regularized distance function from z by

ρz,ε(z) = inf
{zi}

N−1∑
i=0

zi, zi+1 , (17.2)
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where the inf is taken over all finite sequences with z0 = z, zN = z such
that zi, zi+1 ≤ ε, for all 0 ≤ i ≤ N − 1. For z1, z2 < ε, we have |ρz,ε(z)(z1)−
ρz,ε(z)(z2)| ≤ z1, z2. In particular, Lip ρz,ε(z) ≤ 1, for all z. Note also that,
for fixed z, z, the function, ρz,ε(z), is a decreasing function of ε.

Clearly, for all ε > 0, the function, g ≡ 1, is an upper gradient for ρz,ε.
Thus, by (4.22), for all 0 < r <∞, we have∫

Br(z)
ρz,ε dµ ≤ 2κ+1Crµ(Br(z)) . (17.3)

By the dominated convergence theorem, there exists ρz,0 such that on

Br(z), we have ρε
L1−→ ρz,0, as ε→ 0.

Since Z is complete, the existence of the nontrivial measure, µ, satisfying
(0.1), implies that that closed balls of finite radius are compact. Thus, a
standard limiting argument implies that if ρz,0(z) <∞, then there exists a
rectifiable curve, c, from z to z of length ρz,0(z). It is also clear that there
exists no shorter rectifiable curve from z to z. Thus, in the terminology of
section 5, we have ρz,0(z) = F1(z, z).

It follows from (17.3) together with (0.1), that for all z, there exists z1,
with z1, z ≤ 1

2z, z, such that there exists a curve, c1, from z to z1, of length
at most 1

2c(κ,C)z, z. By repeating this construction, with z1 in place of
z, and proceeding by induction, we obtain a sequence of points, zi, and
curves, ci, from zi−1 to zi, such that the infinite union, c1 ∪ c2 · · · , is a
rectifiable curve from z to z, of length at most c(κ,C)z, z. �
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vista Matemática Iberoamericana 2 (1996), 187–275.
[Se3] S. Semmes, Finding curves on general spaces through quantitative

topology, with applications to Sobolev and Poincaré inequalities, Se-
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