First Name:

Last Name:

Stony Brook ID:

Signature:

Choose 4 out of 5 problems. (Clearly mark which one you are NOT DOING.) Write coherent mathematical statements and show your work on all problems. If you use a theorem from the book, you must fully state it. If you give an example/construction then you must prove it is such. Please write clearly.

Rules.

- 1. Start when told to; stop when told to.
- 2. No notes, books, etc,...
- 3. Turn off all unauthorized electronic devices (for example, your cell phone).

1	2	3	4	5

TOTAL:

FOR ALL QUESTIONS: Unless stated otherwise, always assume:

- $(\mathbb{X}, \mathcal{M}, \mu)$ is a measure space. \mathbb{R} is the extended real number system $\mathbb{R} \cup \{-\infty, +\infty\}$.
- when a function $q: \mathbb{X} \to \overline{\mathbb{R}}$ is said to be measurable, we mean that it is measurable with respect to the σ -algebras \mathcal{M} on \mathbb{X} and \mathcal{B} (the Borel σ -algebra) on $\overline{\mathbb{R}}$; in other words, q is $(\mathcal{M}, \mathcal{B})$ -measurable.
- 1. (10 points) Suppose $f_n : \mathbb{X} \to \overline{\mathbb{R}}$ is a sequence of measurable functions. Let

$$g = \inf f_n$$
.

and

 $h = \liminf f_n$.

Show that g and h are measurable.

2. (10 points)

(a) State and prove Fatou's Lemma

(b) Give a specific example of a situation where the inequality in the statement you gave is not an equality.

3. (10 points) Explicitly construct a Cantor set of positive measure: a set $K \subset \mathbb{R}$ which is compact, totally disconnected and has no isolated points, such that K has positive Lebesgue measure.

4. (10 points)

(a) What is a simple function?

(b) Let $f : \mathbb{X} \to [0, \infty)$ be a measurable function. Show by construction that there is a sequence of *simple* functions $\phi_n : \mathbb{X} \to \mathbb{R}$ such that $\phi_n \to f$ everywhere, and that this limit is uniform on the set $\{x : f(x) < 1000\}$.

5. (10 points)

A mesurable function $f : \mathbb{X} \to \mathbb{R}$ is said to be integrable if $\int |f| d\mu < \infty$. For an integrable function f, define $||f||_1 = \int |f| d\mu$. Suppose $f_n : \mathbb{X} \to \mathbb{R}$ are integrable functions and satisfy $f_n \to f$ uniformly.

(a) Show that if $\mu(\mathbb{X}) < \infty$ then $\int f_n \to \int f < \infty$.

(b) Show (by example) that if $\mu(\mathbb{X}) = \infty$ then the conclusion above fails, i.e. we may have $\int f_n \not\to \int f$.