The
$$\frac{1}{3}$$
-Trick

Let

$$\Delta_{\mathbb{R}}:=\{[\frac{i}{2^k},\frac{i+1}{2^k}):\ i,k\in\mathbb{Z}\}$$

and for an interval I, let

$$\Delta_I := \{ [a, b) \in \Delta_{\mathbb{R}} : [a, b) \subset I \}.$$

Similarly, let

$$\Delta_{\mathbb{R}^n} := \{ I_1 \times \dots \times I_n : I_j \in \Delta_{\mathbb{R}}; \ |I_j| = |I_\ell| \}$$

and

$$\Delta_Q := \{ R \in \Delta_{\mathbb{R}^n} : R \subset Q \}$$

For $U \subset \mathbb{R}^n$, and $v \in \mathbb{R}^n$ denote by U + v the set

$$U + v := \{u + v : u \in U\}.$$

If \mathcal{U} is a collection of subsets of \mathbb{R}^n , then we denote by \mathcal{U}^{+v} the collection

$$\mathcal{U}^{+v} := \{U + v : U \in \mathcal{U}\}.$$

The following are 3 pretty easy questions. The main lesson is "any ball in \mathbb{R}^n is contained in a cube of roughly the same size, where the cube is from one of several dyadic grids". Let $J_0 = [-1, 2)$ and $Q_0 = [-1, 2)^n \subset \mathbb{R}^n$.

- 1. Show that there is an interval $J \subset [0,1)$ such that $J \notin \Delta_{J_0}$
- 2. Show that there is a constant C > 0 such that for any $x \in [0,1)$, and $r \in (0,\frac{1}{C})$ we have an interval J such that $(x-r,x+r) \subset J$, and

$$J \subset \Delta_{J_0} \cup \Delta_{J_0}^{+\frac{1}{3}}$$

where J satisfies $r \leq |J| < Cr$.

Hint: you will need to use the fact that 3 and 2 are co-prime. It could be useful to write $\frac{1}{3}$ in binary.

3. Conclude that there is a constant $C_n > 0$ and vectors $v_1, v_2,, v_N \in \mathbb{R}^n$, where $N = 2^n$, such that for any $x \in [0,1)^n$, and $r \in (0,\frac{1}{C_n})$ we have a cube Q such that $B(x,r) \subset Q$, and

$$Q \subset \bigcup_{i=1}^{N} \Delta_{Q_0}^{v_i}$$

where Q satisfies $r \leq \text{diam}(Q) < Cr$.

Hint: take $v_i \in \{0, \frac{1}{3}\}^n$.